VECTORS

A DEFINITION

A.1 FINDING THE IMAGE OF A POINT

Ex 1: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Ex 2: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Ex 3: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Ex 4: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Ex 5: Find the coordinates of the image of point M under a translation by vector \vec{v} .

A.2 TRANSLATION OF FIGURES

MCQ 6: Is the figure A' the image of figure A under a translation by vector \vec{v} ?

 \square Yes

□ No

MCQ 7: translation by vector \vec{v} ?

- ☐ Yes
- \square No

Is the figure A' the image of figure A under a MCQ 8: translation by vector \vec{v} ?

- □ Yes
- \square No

MCQ 9: Is the figure A' the image of figure A under a translation by vector \vec{v} ?

- \square Yes
- \square No

A.3 DRAWING IMAGES FIGURES

Ex 10: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Is the figure A' the image of figure A under a **Ex 11:** Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Ex 12: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Ex 13: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

A.4 FINDING COMPONENTS OF A VECTOR

Ex 14: Find the components of the vector \vec{v} .

$$\vec{v} = \left(\begin{array}{c} \\ \end{array}\right)$$

Ex 15: Find the components of the vector \vec{v} .

$$\vec{v} = \left(\begin{array}{|c|} \hline \\ \hline \end{array} \right)$$

Ex 16: Find the components of the vector \vec{v} .

$$ec{v} = \left(\begin{array}{c} \hline \end{array} \right)$$

Ex 17: Find the components of the vector \vec{v} .

$$ec{v} = \left(\overline{\hspace{1cm}} \right)$$

A.5 REPRESENTING VECTORS ON A GRID

Ex 18: Draw the arrows diagram of $\vec{v} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Ex 19: Draw the arrows diagram of $\vec{u} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$.

Ex 20: Draw the arrows diagram of $\vec{w} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

Ex 21: Draw the arrows diagram of $\vec{z} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$.

B TWO POINT NOTATION

B.1 FINDING COMPONENTS OF A VECTOR

Ex 22: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{|c|} \hline \\ \hline \end{array}\right)$$

Ex 23: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{|c|} \hline \\ \hline \end{array} \right)$$

Ex 24: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 25: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

B.2 FINDING THE VECTOR COMPONENTS

Ex 26: For A(1,2) and B(3,3), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 27: For E(0, 5) and F(4, 2), find the components of the vector \overrightarrow{EF} .

$$\overrightarrow{EF} = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)$$

Ex 28: For B(-2, 0) and C(3, 4), find the components of the vector \overrightarrow{BC} .

$$\overrightarrow{BC} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 29: For B(3, 3) and A(1, 2), find the components of the vector \overrightarrow{BA} .

$$\overrightarrow{BA} = \left(\begin{array}{c} \\ \end{array}\right)$$

B.3 PLACING A POINT USING A VECTOR

Ex 30:

- 1. Plot the point A(-4;1).
- 2. Plot the point B such that $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Ex 31:

- 1. Plot the point C(1; -3).
- 2. Plot the point D such that $\overrightarrow{CD} = \begin{pmatrix} -5\\2 \end{pmatrix}$.

Ex 32:

- 1. Plot the point E(0; 2).
- 2. Plot the point F such that $\overrightarrow{EF} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

C EQUALITY BETWEEN VECTORS

C.1 DRAWING EQUAL VECTORS

Ex 33: Draw a vector equal to \vec{v} .

Ex 34: Draw a vector equal to \vec{w} .

Ex 35: Draw a vector equal to \vec{u} .

Ex 36: Draw a vector equal to \vec{s} .

C.2 FINDING THE COORDINATES OF A POINT WITH A GIVEN VECTOR

Ex 37: Let A(2, 3), B(5, 7), and C(1, -2).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

Ex 38: Let A(0, 0), B(4, 3), and C(2, 1).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

Ex 39: Let A(-1, 2), B(1, 5), and C(3, -1).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

D ADDITION

D.1 DRAWING THE SUM OF TWO VECTORS

Ex 40: Draw the arrows diagram of $\vec{u} + \vec{v}$.

Ex 41: Draw the arrows diagram of $\vec{p} + \vec{q}$.

Ex 42: Draw the arrows diagram of $\vec{m} + \vec{n}$.

D.2 CALCULATING THE SUM OF VECTORS

Ex 43: Calculate the sum of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$\vec{a} + \vec{b} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 44: Calculate the sum of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\vec{u} + \vec{v} = \left(\begin{array}{c} \\ \end{array}\right)$$

Ex 45: Calculate the sum of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

$$\vec{p} + \vec{q} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 46: Calculate the sum of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

$$\vec{m} + \vec{n} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

D.3 RECOGNIZING SUMS OF VECTORS

MCQ 47: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC}$.

- $\square \overrightarrow{CA}$
- $\square \overrightarrow{AC}$
- $\square \overrightarrow{BA}$
- $\square \overrightarrow{CB}$

MCQ 48: Calculate the sum of vectors: $\overrightarrow{BC} + \overrightarrow{AB}$.

- $\Box \overrightarrow{CB}$
- $\square \overrightarrow{BA}$
- $\Box \vec{0}$
- $\square \overrightarrow{AC}$

MCQ 49: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BA}$.

- $\square \overrightarrow{BA}$
- $\Box \overrightarrow{AB}$
- $\Box \vec{0}$

MCQ 50: Calculate the sum of vectors: $\overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$.

- $\Box \overrightarrow{CE}$
- $\Box \vec{0}$
- $\square \overrightarrow{AC}$
- $\square \overrightarrow{EC}$

MCQ 51: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$.

- $\square \ \overrightarrow{AD}$
- $\square \overrightarrow{DA}$
- $\square \overrightarrow{BD}$
- $\Box \vec{0}$

E SUBTRACTION

E.1 DRAWING THE NEGATIVE OF A VECTOR

Ex 52: Draw the negative vector of \vec{v} .

Ex 53: Draw the negative vector of \vec{w} .

Ex 54: Draw the negative vector of \vec{u} .

E.2 CALCULATING THE NEGATIVE OF A VECTOR

Ex 55: Calculate the negative of the vector $\vec{a} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$.

$$-\vec{a} = \left(\begin{array}{|c|} \hline \\ \hline \end{array}\right)$$

Ex 56: Calculate the negative of the vector $\vec{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.

$$-ec{b}=\left(egin{array}{c} lacksquare \ \end{array}
ight)$$

Ex 57: Calculate the negative of the vector $\vec{u} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

Ex 58: Calculate the negative of the vector $\vec{p} = \begin{pmatrix} 0 \\ -8 \end{pmatrix}$.

$$-\vec{p} = \left(\begin{array}{c} \\ \end{array}\right)$$

E.3 CALCULATING THE DIFFERENCE OF VECTORS

Ex 59: Calculate the difference of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$\vec{a} - \vec{b} = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)$$

Ex 60: Calculate the difference of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\vec{u} - \vec{v} = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)$$

Ex 61: Calculate the difference of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

$$\vec{p} - \vec{q} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 62: Calculate the difference of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

$$\vec{m} - \vec{n} = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)$$

F SCALAR MULTIPLICATION

F.1 MULTIPLYING A VECTOR BY A SCALAR

Ex 63: Calculate the product of the vector $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$ by 3.

$$3\vec{b} = \left(\begin{array}{|c|c|} \hline \end{array}\right)$$

Ex 64: Calculate the product of the vector $\vec{u} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ by -2.

$$-2\vec{u} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

Ex 65: Calculate the product of the vector $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ by -4.

$$-4\vec{a} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 66: Calculate the product of the vector $\vec{p} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$ by 0.5.

$$\frac{1}{2}\vec{p} = \left(\boxed{} \right)$$

F.2 CALCULATING LINEAR COMBINATIONS OF VECTORS

Ex 67: Calculate $3\vec{a} - \vec{b}$ where $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$3\vec{a} - \vec{b} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 68: Calculate $2(\vec{u} + 2\vec{v})$ where $\vec{u} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

$$2\big(\vec{u}+2\vec{v}\big) = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 69: Calculate $4\vec{p} - 2\vec{q}$ where $\vec{p} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.

$$4\vec{p} - 2\vec{q} = \left(\begin{array}{|c|} \\ \hline \end{array}\right)$$

Ex 70: Calculate $-3\vec{u} + 5\vec{v}$ where $\vec{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$.

$$-3\vec{u} + 5\vec{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

F.3 DETERMINING THE IMAGE OF A POINT UNDER A HOMOTHETY

Ex 71: Let O(0, 0) and M(3, -2). The point M' is the image of M by the homothety of center O and ratio k = 2 so that $2\overrightarrow{OM} = \overrightarrow{OM'}$.

Find the coordinates of M'.

Ex 72: Let A(2, -1) and M(3, 1). The point M' is the image of M by the homothety of center A and ratio k = -2 so that $\overrightarrow{AM'} = -2 \overrightarrow{AM}$.

Find the coordinates of M'.

Ex 73: Let A(2, -1) and M(3, 1). The point M' is the image of M by the homothety of center A and ratio k = 3, so that $\overrightarrow{AM'} = 3 \overrightarrow{AM}$.

Find the coordinates of M'.

G MAGNITUDE OF A VECTOR

G.1 CALCULATING THE LENGTH OF A VECTOR

Ex 74: Calculate the length of $\vec{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$\|\vec{v}\| =$$
 units

Ex 75: Calculate the length of $\vec{p} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$

$$\|\vec{p}\| =$$
 units

Ex 76: Calculate the length of $\vec{u} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

$$\| \vec{u} \| =$$
 units

Ex 77: Calculate the length of $\vec{q} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\|\vec{q}\| =$$
 units

G.2 CALCULATING THE DISTANCE BETWEEN TWO POINTS

Ex 78: Let A(2, 3) and B(7, -1).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Calculate the distance AB.

$$AB =$$
 units

Ex 79: Let A(-2, 5) and B(4, 2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Calculate the distance AB.

$$AB =$$
 units

Ex 80: Let A(0, -2) and B(-3, 6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Calculate the distance AB.

$$AB =$$
 units

G.3 USING COORDINATES TO DETERMINE TRIANGLE TYPES

Ex 81: Let A(0, 0), B(6, 0), and C(6, 8).

1. Calculate the lengths AB, BC, and CA.

2. Calculate the perimeter of triangle ABC.

Ex 82: Let A(0, 0), B(4, 0), and C(2, 4).

1. Calculate the lengths AB, BC, and CA.

•
$$AB = \Box$$

2. Is the triangle ABC isosceles?

П	١,٦	V_{α}
_		

$$\square$$
 No

Ex 83: Let A(0, 0), $B(2, 2\sqrt{3})$, and C(4, 0).

1. Calculate the lengths AB, BC, and CA.

2. Is the triangle ABC equilateral?

 \square Yes

□ No

H COLINEARITY

H.1 TESTING PARALLELISM/ALIGNMENT USING VECTORS

Ex 84:

Let A(1, 2), B(5, 4), C(-1, -1), and D(5, 2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{CD})$.

$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \boxed{}$$

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

 \square Yes

 \square No

Ex 85:

Let A(1, 2), B(5, 4), C(-1, -1), and D(5, 3).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{CD})$.

$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \square$$

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

 \square Yes

 \square No

Ex 86:

Let A(1, 2), B(5, 4), and C(9, 6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

$$\det(\overrightarrow{AB}, \overrightarrow{AC}) = \boxed{}$$

4. Are the points A, B, and C aligned?

 \square Yes

 \square No

Ex 87:

Let A(1, 2), B(5, 4), and C(9, 7).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \left(\begin{array}{c} \\ \end{array}\right)$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

- 4. Are the points A, B, and C aligned?
 - \square Yes
 - \square No