A DEFINITION

A.1 FINDING THE IMAGE OF A POINT

Ex 1: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Answer:

M'(3,3)

Ex 2: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Answer:

M'(4,1)

Ex 3: Find the coordinates of the image of point M under a translation by vector \vec{v} .

Answer:

M'(4,1)

Ex 4: Find the coordinates of the image of point M under a translation by vector \vec{v} .

M'(5,6)

Answer:

M'(5, 6)

Ex 5: Find the coordinates of the image of point M under a translation by vector \vec{v} .

M'(2,3)

M'(2,3)

A.2 TRANSLATION OF FIGURES

MCQ 6: Is the figure A' the image of figure A under a translation by vector \vec{v} ?

 \boxtimes Yes

 \square No

 ${\it Answer: Yes}$

MCQ 7: Is the figure A' the image of figure A under a translation by vector \vec{v} ?

 \square Yes

⊠ No

Answer: No, the figure A' is misplaced. Here is where it should

MCQ 8: Is the figure A' the image of figure A under a translation by vector \vec{v} ?

⊠ Yes

 \square No

Answer: Yes

Is the figure A' the image of figure A under a MCQ 9: translation by vector \vec{v} ?

 \square Yes

⊠ No

A.3 DRAWING IMAGES FIGURES

Ex 10: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Answer:

1. Draw the image vertices: For each vertex, translate it by the vector \vec{v} by moving 2 units right and 4 units up from its original position. Place the new points on the grid.

2. Draw the image figure: Connect the image vertices with lines in the same order as the original figure.

Answer: No, the figure A' is misplaced. Here is where it should **Ex 11:** Draw the figure A', the image of figure A under a translation by vector \vec{v} .

1. Draw the image vertices: For each vertex, translate it by the vector \vec{v} by moving 1 unit right and 2 units down from its original position. Place the new points on the grid.

2. **Draw the image figure**: Connect the image vertices with lines in the same order as the original figure.

Ex 12: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Answer:

1. Draw the image vertices: For each vertex, translate it by the vector \vec{v} by moving 3 units right and 1 unit down from its original position. Place the new points on the grid.

2. **Draw the image figure**: Connect the image vertices with lines in the same order as the original figure.

Ex 13: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Answer:

4

1. Draw the image vertices: For each vertex, translate it by the vector \vec{v} by moving 2 units right and 4 units up from its original position. Place the new points on the grid.

2. **Draw the image figure**: Connect the image vertices with lines in the same order as the original figure.

A.4 FINDING COMPONENTS OF A VECTOR

Ex 14: Find the components of the vector \vec{v} .

$$\vec{v} = \begin{pmatrix} \boxed{2} \\ \boxed{1} \end{pmatrix}$$

Answer:

$$\vec{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Ex 15: Find the components of the vector \vec{v} .

$$\vec{v} = \begin{pmatrix} \boxed{-2} \\ \boxed{3} \end{pmatrix}$$

Answer:

$$\vec{v} = \begin{pmatrix} -2\\ 3 \end{pmatrix}$$

Ex 16: Find the components of the vector \vec{v} .

$$\vec{v} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

Answer:

$$\vec{v} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

Ex 17: Find the components of the vector \vec{v} .

$$\vec{v} = \begin{pmatrix} \boxed{-1} \\ \boxed{-3} \end{pmatrix}$$

Answer:

$$\vec{v} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$

A.5 REPRESENTING VECTORS ON A GRID

Ex 18: Draw the arrows diagram of $\vec{v} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Answer:

Ex 19: Draw the arrows diagram of $\vec{u} = \begin{pmatrix} -2\\4 \end{pmatrix}$.

Answer:

Ex 20: Draw the arrows diagram of $\vec{w} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

Answer:

Ex 21: Draw the arrows diagram of $\vec{z} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$.

Answer:

B TWO POINT NOTATION

B.1 FINDING COMPONENTS OF A VECTOR

Ex 22: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{2} \\ \boxed{1} \end{pmatrix}$$

Answer:

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Ex 23: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{-2} \\ \boxed{3} \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} -2\\ 3 \end{pmatrix}$$

Ex 24: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{2} \\ \boxed{-4} \end{pmatrix}$$

Answer:

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

Ex 25: Find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{-1} \\ \boxed{-3} \end{pmatrix}$$

Answer:

$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$$

B.2 FINDING THE VECTOR COMPONENTS

Ex 26: For A(1,2) and B(3,3), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Answer:

$$\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$
$$= \begin{pmatrix} 3 - 1 \\ 3 - 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Ex 27: For E(0, 5) and F(4, 2), find the components of the vector \overrightarrow{EF} .

$$\overrightarrow{EF} = \begin{pmatrix} \boxed{4} \\ \boxed{-3} \end{pmatrix}$$

Answer:

$$\overrightarrow{EF} = \begin{pmatrix} x_F - x_E \\ y_F - y_E \end{pmatrix}$$
$$= \begin{pmatrix} 4 - 0 \\ 2 - 5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

Ex 28: For B(-2, 0) and C(3, 4), find the components of the vector \overrightarrow{BC} .

$$\overrightarrow{BC} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

$$\overrightarrow{BC} = \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$
$$= \begin{pmatrix} 3 - (-2) \\ 4 - 0 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Ex 29: For B(3, 3) and A(1, 2), find the components of the vector \overrightarrow{BA} .

$$\overrightarrow{BA} = \left(\begin{array}{|c|} \hline -2 \\ \hline -1 \end{array} \right)$$

Answer:

$$\overrightarrow{BA} = \begin{pmatrix} x_A - x_B \\ y_A - y_B \end{pmatrix}$$
$$= \begin{pmatrix} 1 - 3 \\ 2 - 3 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

B.3 PLACING A POINT USING A VECTOR

Ex 30:

- 1. Plot the point A(-4;1).
- 2. Plot the point B such that $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Answer:

A(-4;1) and B(-2;4).

Ex 31:

- 1. Plot the point C(1; -3).
- 2. Plot the point D such that $\overrightarrow{CD} = \begin{pmatrix} -5\\2 \end{pmatrix}$.

C(1; -3) and D(-4; -1).

Ex 32:

- 1. Plot the point E(0; 2).
- 2. Plot the point F such that $\overrightarrow{EF} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.

Answer:

E(0; 2) and F(3; -2).

C EQUALITY BETWEEN VECTORS

C.1 DRAWING EQUAL VECTORS

Ex 33: Draw a vector equal to \vec{v} .

Answer: Draw a vector with the same direction, sense, and length as \vec{v} , starting from any point on the grid. For example:

Ex 34: Draw a vector equal to \vec{w} .

Answer: Draw a vector with the same direction, sense, and length as \vec{w} , starting from any point on the grid. For example:

Ex 35: Draw a vector equal to \vec{u} .

Answer: Draw a vector with the same direction, sense, and length as \vec{u} , starting from any point on the grid. For example:

Ex 36: Draw a vector equal to \vec{s} .

Answer: Draw a vector with the same direction, sense, and length as \vec{s} , starting from any point on the grid. For example:

C.2 FINDING THE COORDINATES OF A POINT WITH A GIVEN VECTOR

Ex 37: Let A(2, 3), B(5, 7), and C(1, -2). Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

$$D = \left(\boxed{4}, \boxed{2}\right)$$

Answer:

• First, compute the vectors:

$$\overrightarrow{AB} = \begin{pmatrix} 5 - 2 \\ 7 - 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} x_D - 1 \\ y_D - (-2) \end{pmatrix} = \begin{pmatrix} x_D - 1 \\ y_D + 2 \end{pmatrix}$$

• Then, solve the equation:

$$\overrightarrow{AB} = \overrightarrow{CD}$$

$$\binom{3}{4} = \binom{x_D - 1}{y_D + 2}$$

$$3 = x_D - 1 \text{ and } 4 = y_D + 2$$

$$x_D = 3 + 1 \text{ et } y_D = 4 - 2$$

$$x_D = 4 \text{ and } y_D = +2$$

So, D(4, 2).

Ex 38: Let A(0, 0), B(4, 3), and C(2, 1). Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

$$D = (6, 4)$$

Answer:

• First, compute the vectors:

$$\overrightarrow{AB} = \begin{pmatrix} 4 - 0 \\ 3 - 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} x_D - 2 \\ y_D - 1 \end{pmatrix} = \begin{pmatrix} x_D - 2 \\ y_D - 1 \end{pmatrix}$$

• Then, solve the equation:

$$\overrightarrow{AB} = \overrightarrow{CD}$$

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} x_D - 2 \\ y_D - 1 \end{pmatrix}$$

$$4 = x_D - 2 \text{ and } 3 = y_D - 1$$

$$x_D = 6 \text{ and } y_D = 4$$

So, D(6, 4).

Ex 39: Let A(-1, 2), B(1, 5), and C(3, -1). Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

$$D = \left(5, 2 \right)$$

Answer:

• First, compute the vectors:

$$\overrightarrow{AB} = \begin{pmatrix} 1 - (-1) \\ 5 - 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\overrightarrow{CD} = \begin{pmatrix} x_D - 3 \\ y_D - (-1) \end{pmatrix} = \begin{pmatrix} x_D - 3 \\ y_D + 1 \end{pmatrix}$$

• Then, solve the equation:

$$\overrightarrow{AB} = \overrightarrow{CD}$$

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} x_D - 3 \\ y_D + 1 \end{pmatrix}$$

$$2 = x_D - 3 \text{ and } 3 = y_D + 1$$

$$x_D = 5 \text{ and } y_D = 2$$

So, D(5, 2).

D ADDITION

D.1 DRAWING THE SUM OF TWO VECTORS

Ex 40: Draw the arrows diagram of $\vec{u} + \vec{v}$.

Answer: To add \vec{u} and \vec{v} :

1. At the arrowhead end of \vec{u} , draw \vec{v} starting from there (keep the same length and direction).

2. Draw the resulting vector from the start of \vec{u} to the tip of the new \vec{v} . This vector is $\vec{u} + \vec{v}$.

Ex 41: Draw the arrows diagram of $\vec{p} + \vec{q}$.

Answer: To add \vec{p} and \vec{q} :

- 1. Place \vec{q} starting at the tip of \vec{p} (preserving its direction and length).
- 2. Draw the vector from the tail of \vec{p} to the tip of this new \vec{q} . This is $\vec{p} + \vec{q}$.

Ex 42: Draw the arrows diagram of $\vec{m} + \vec{n}$.

Answer: To add \vec{m} and \vec{n} :

- 1. Draw \vec{n} starting at the tip of \vec{m} (same direction and length as the original).
- 2. Draw the resulting vector from the origin of \vec{m} to the tip of this new \vec{n} . This is $\vec{m} + \vec{n}$.

D.2 CALCULATING THE SUM OF VECTORS

Ex 43: Calculate the sum of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$\vec{a} + \vec{b} = \begin{pmatrix} \boxed{-3} \\ \boxed{1} \end{pmatrix}$$

Answer:

$$\vec{a} + \vec{b} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 2 + (-5) \\ (-3) + 4 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

Ex 44: Calculate the sum of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\vec{u} + \vec{v} = \begin{pmatrix} \boxed{3} \\ \boxed{7} \end{pmatrix}$$

$$\vec{u} + \vec{v} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 + (-1) \\ 2 + 5 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$

Ex 45: Calculate the sum of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}$.

$$\vec{p} + \vec{q} = \left(\boxed{\frac{5}{2}} \right)$$

Answer:

$$\vec{p} + \vec{q} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} + \begin{pmatrix} 8 \\ -4 \end{pmatrix}$$
$$= \begin{pmatrix} (-3) + 8 \\ 6 + (-4) \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Ex 46: Calculate the sum of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$.

$$\vec{m} + \vec{n} = \begin{pmatrix} \boxed{5} \\ \boxed{-4} \end{pmatrix}$$

Answer:

$$\vec{m} + \vec{n} = \begin{pmatrix} 0 \\ -7 \end{pmatrix} + \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 0+5 \\ (-7)+3 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ -4 \end{pmatrix}$$

D.3 RECOGNIZING SUMS OF VECTORS

MCQ 47: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC}$.

- $\Box \ \overrightarrow{CA}$
- $\boxtimes \overrightarrow{AC}$
- $\square \overrightarrow{BA}$
- $\Box \overrightarrow{CB}$

Answer:

$$\overrightarrow{AB}$$
 + \overrightarrow{BC} = \overrightarrow{AC} (by Chasles' relation)

MCQ 48: Calculate the sum of vectors: $\overrightarrow{BC} + \overrightarrow{AB}$.

- $\Box \ \overrightarrow{CB}$
- $\square \overrightarrow{BA}$

- $\Box \vec{0}$
- $\boxtimes \overrightarrow{AC}$

Answer:

$$\overrightarrow{BC}$$
 + \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BC}
 = \overrightarrow{AC} (\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}

MCQ 49: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BA}$.

- $\square \overrightarrow{BA}$
- $\Box \overrightarrow{AB}$
- $\boxtimes \vec{0}$

Answer:

$$\overrightarrow{AB}$$
 + \overrightarrow{BA} = \overrightarrow{AA}
= $\overrightarrow{0}$

MCQ 50: Calculate the sum of vectors: $\overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$.

- $\square \overrightarrow{CE}$
- $\Box \vec{0}$
- $\square \overrightarrow{AC}$
- $\boxtimes \overrightarrow{EC}$

Answer:

$$\overrightarrow{EA}$$
 + \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{EB} + \overrightarrow{AC}
= \overrightarrow{EC}

MCQ 51: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$.

- $\boxtimes \overrightarrow{AD}$
- $\square \overrightarrow{DA}$
- $\square \overrightarrow{BD}$
- $\Box \vec{0}$

Answer:

$$\overrightarrow{AB}$$
 + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{CD}

E SUBTRACTION

E.1 DRAWING THE NEGATIVE OF A VECTOR

Ex 52: Draw the negative vector of \vec{v} .

Answer: Draw a vector with the same direction, **opposite** sense, and length as \vec{v} , starting from any point on the grid. For example:

Ex 53: Draw the negative vector of \vec{w} .

Answer: Draw a vector with the same direction, **opposite** sense, and length as \vec{w} , starting from any point on the grid. For example:

Ex 54: Draw the negative vector of \vec{u} .

Answer: Draw a vector with the same direction, **opposite** sense, and length as \vec{u} , starting from any point on the grid. For example:

E.2 CALCULATING THE NEGATIVE OF A VECTOR

Ex 55: Calculate the negative of the vector $\vec{a} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$.

$$-\vec{a} = \begin{pmatrix} \boxed{-4} \\ \boxed{7} \end{pmatrix}$$

Answer:

$$-\vec{a} = -\begin{pmatrix} 4\\ -7 \end{pmatrix}$$
$$= \begin{pmatrix} -4\\ 7 \end{pmatrix}$$

Ex 56: Calculate the negative of the vector $\vec{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.

$$-\vec{b} = \begin{pmatrix} \boxed{3} \\ \boxed{-5} \end{pmatrix}$$

Answer:

$$-\vec{b} = -\begin{pmatrix} -3\\5 \end{pmatrix}$$
$$= \begin{pmatrix} 3\\-5 \end{pmatrix}$$

Ex 57: Calculate the negative of the vector $\vec{u} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

$$-\vec{u} = \left(\begin{array}{|c|} \hline -6 \\ \hline -2 \end{array} \right)$$

Answer:

$$-\vec{u} = -\begin{pmatrix} 6\\2 \end{pmatrix}$$
$$= \begin{pmatrix} -6\\-2 \end{pmatrix}$$

Ex 58: Calculate the negative of the vector $\vec{p} = \begin{pmatrix} 0 \\ -8 \end{pmatrix}$.

$$-\vec{p} = \begin{pmatrix} \boxed{0} \\ \boxed{8} \end{pmatrix}$$

Answer:

$$-\vec{p} = -\begin{pmatrix} 0 \\ -8 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 8 \end{pmatrix}$$

E.3 CALCULATING THE DIFFERENCE OF VECTORS

Ex 59: Calculate the difference of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$\vec{a} - \vec{b} = \begin{pmatrix} \boxed{7} \\ \boxed{-7} \end{pmatrix}$$

Answer:

$$\vec{a} - \vec{b} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 2 - (-5) \\ -3 - 4 \end{pmatrix}$$
$$= \begin{pmatrix} 7 \\ -7 \end{pmatrix}$$

Ex 60: Calculate the difference of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\vec{u} - \vec{v} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

$$\vec{u} - \vec{v} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} - \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 - (-1) \\ 2 - 5 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$

Ex 61: Calculate the difference of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and \vec{E} **x 65:** Calculate the product of the vector $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ by -4. $\vec{q} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}.$

$$\vec{p} - \vec{q} = \begin{pmatrix} \boxed{-11} \\ \boxed{10} \end{pmatrix}$$

Answer:

$$\vec{p} - \vec{q} = \begin{pmatrix} -3 \\ 6 \end{pmatrix} - \begin{pmatrix} 8 \\ -4 \end{pmatrix}$$
$$= \begin{pmatrix} -3 - 8 \\ 6 - (-4) \end{pmatrix}$$
$$= \begin{pmatrix} -11 \\ 10 \end{pmatrix}$$

Ex 62: Calculate the difference of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = {5 \choose 3}.$

$$\vec{m} - \vec{n} = \begin{pmatrix} \boxed{-5} \\ \boxed{-10} \end{pmatrix}$$

Answer.

$$\vec{m} - \vec{n} = \begin{pmatrix} 0 \\ -7 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} 0 - 5 \\ -7 - 3 \end{pmatrix}$$
$$= \begin{pmatrix} -5 \\ -10 \end{pmatrix}$$

F SCALAR MULTIPLICATION

F.1 MULTIPLYING A VECTOR BY A SCALAR

Ex 63: Calculate the product of the vector $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$ by 3.

$$3\vec{b} = \begin{pmatrix} \boxed{-15} \\ \boxed{12} \end{pmatrix}$$

Answer.

$$3\vec{b} = 3 \times \begin{pmatrix} -5\\4 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \times (-5)\\3 \times 4 \end{pmatrix}$$
$$= \begin{pmatrix} -15\\12 \end{pmatrix}$$

Ex 64: Calculate the product of the vector $\vec{u} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ by -2.

$$-2\vec{u} = \begin{pmatrix} \boxed{0} \\ \boxed{-12} \end{pmatrix}$$

Answer.

$$-2\vec{u} = -2 \times \begin{pmatrix} 0 \\ 6 \end{pmatrix}$$
$$= \begin{pmatrix} -2 \times 0 \\ -2 \times 6 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ -12 \end{pmatrix}$$

$$-4\vec{a} = \begin{pmatrix} \boxed{-8} \\ \boxed{12} \end{pmatrix}$$

Answer.

$$-4\vec{a} = -4 \times \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
$$= \begin{pmatrix} -4 \times 2 \\ -4 \times (-3) \end{pmatrix}$$
$$= \begin{pmatrix} -8 \\ 12 \end{pmatrix}$$

Ex 66: Calculate the product of the vector $\vec{p} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$ by 0.5.

$$\frac{1}{2}\vec{p} = \left(\begin{array}{|c|} \hline 3.5 \\ \hline -0.5 \end{array} \right)$$

Answer:

$$0.5\vec{p} = 0.5 \times \begin{pmatrix} 7 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} 0.5 \times 7 \\ 0.5 \times (-1) \end{pmatrix}$$
$$= \begin{pmatrix} 3.5 \\ -0.5 \end{pmatrix}$$

CALCULATING LINEAR COMBINATIONS **VECTORS**

Ex 67: Calculate $3\vec{a} - \vec{b}$ where $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$3\vec{a} - \vec{b} = \begin{pmatrix} \boxed{11} \\ \boxed{-13} \end{pmatrix}$$

Answer.

$$3\vec{a} - \vec{b} = 3 \times \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 3 \times 2 \\ 3 \times (-3) \end{pmatrix} - \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 6 \\ -9 \end{pmatrix} - \begin{pmatrix} -5 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 6 - (-5) \\ -9 - 4 \end{pmatrix}$$
$$= \begin{pmatrix} 6 + (+5) \\ -9 - 4 \end{pmatrix}$$
$$= \begin{pmatrix} 11 \\ -13 \end{pmatrix}$$

Ex 68: Calculate $2(\vec{u} + 2\vec{v})$ where $\vec{u} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

$$2(\vec{u} + 2\vec{v}) = \begin{pmatrix} \boxed{14} \\ \boxed{22} \end{pmatrix}$$

Answer:

$$2(\vec{u} + 2\vec{v}) = 2\left(\binom{1}{-2} + 2 \times \binom{3}{5}\right)$$
$$= 2\left(\binom{1}{-2} + \binom{6}{10}\right)$$
$$= 2\left(\frac{1+6}{-2+10}\right)$$
$$= 2\binom{7}{8}$$
$$= \binom{14}{16}$$

Ex 69: Calculate $4\vec{p} - 2\vec{q}$ where $\vec{p} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.

$$4\vec{p} - 2\vec{q} = \begin{pmatrix} \boxed{-8} \\ \boxed{22} \end{pmatrix}$$

Answer:

$$4\vec{p} - 2\vec{q} = 4 \begin{pmatrix} -1 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ -5 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \times -1 \\ 4 \times 3 \end{pmatrix} - \begin{pmatrix} 2 \times 2 \\ 2 \times -5 \end{pmatrix}$$
$$= \begin{pmatrix} -4 \\ 12 \end{pmatrix} - \begin{pmatrix} 4 \\ -10 \end{pmatrix}$$
$$= \begin{pmatrix} -4 - 4 \\ 12 - (-10) \end{pmatrix}$$
$$= \begin{pmatrix} -8 \\ 22 \end{pmatrix}$$

Ex 70: Calculate $-3\vec{u} + 5\vec{v}$ where $\vec{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$.

$$-3\vec{u} + 5\vec{v} = \begin{pmatrix} \boxed{-11} \\ \boxed{20} \end{pmatrix}$$

Answer:

$$-3\vec{u} + 5\vec{v} = -3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} -6 \\ 0 \end{pmatrix} + \begin{pmatrix} -5 \\ 20 \end{pmatrix}$$
$$= \begin{pmatrix} -6 + (-5) \\ 0 + 20 \end{pmatrix}$$
$$= \begin{pmatrix} -11 \\ 20 \end{pmatrix}$$

F.3 DETERMINING THE IMAGE OF A POINT UNDER A HOMOTHETY

Ex 71: Let O(0, 0) and M(3, -2). The point M' is the image of M by the homothety of center O and ratio k = 2 so that $2\overrightarrow{OM} = \overrightarrow{OM'}$.

Find the coordinates of M'.

$$M' = (6, -4)$$

Answer:

•
$$\overrightarrow{OM'}$$
 = 2 \overrightarrow{OM}
= 2 $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$
= $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$

$$\overrightarrow{OM'} = \begin{pmatrix} x_{M'} - x_O \\ y_{M'} - y_O \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ -4 \end{pmatrix} = \begin{pmatrix} x_{M'} - 0 \\ y_{M'} - 0 \end{pmatrix}$$
So $x_{M'} - 0 = 6$ given $x_{M'} = 6$ and $y_{M'} - 0 = -4$ given $y_{M'} = -4$

So M'(6, -4).

Ex 72: Let A(2, -1) and M(3, 1). The point M' is the image of M by the homothety of center A and ratio k = -2 so that $\overrightarrow{AM'} = -2 \overrightarrow{AM}$.

Find the coordinates of M'.

$$M' = (\boxed{0}, \boxed{-5})$$

Answer:

•
$$\overrightarrow{AM} = \begin{pmatrix} 3-2\\1-(-1) \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

•
$$\overrightarrow{AM'} = -2 \overrightarrow{AM} = -2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

•
$$\overrightarrow{AM'} = \begin{pmatrix} x_{M'} - x_A \\ y_{M'} - y_A \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ -4 \end{pmatrix} = \begin{pmatrix} x_{M'} - 2 \\ y_{M'} - (-1) \end{pmatrix}$$

•
$$x_{M'} - 2 = -2 \implies x_{M'} = 0$$

•
$$y_{M'} - (-1) = -4 \implies y_{M'} = -5$$

So M'(0, -5).

Ex 73: Let A(2, -1) and M(3, 1). The point M' is the image of M by the homothety of center A and ratio k = 3, so that $\overrightarrow{AM'} = 3 \overrightarrow{AM}$.

Find the coordinates of M'.

$$M' = (5, 5)$$

Answer:

$$\bullet \ \overrightarrow{AM} = \begin{pmatrix} 3-2\\1-(-1) \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}$$

•
$$\overrightarrow{AM'} = 3 \overrightarrow{AM} = 3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$\overrightarrow{AM'} = \begin{pmatrix} x_{M'} - x_A \\ y_{M'} - y_A \end{pmatrix} \\
\begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} x_{M'} - 2 \\ y_{M'} - (-1) \end{pmatrix}$$

$$\bullet \ x_{M'} - 2 = 3 \implies x_{M'} = 5$$

•
$$y_{M'} - (-1) = 6 \implies y_{M'} = 5$$

So M'(5, 5).

G MAGNITUDE OF A VECTOR

G.1 CALCULATING THE LENGTH OF A VECTOR

Ex 74: Calculate the length of $\vec{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$\|\vec{v}\| = \boxed{\sqrt{5}}$$
 units

Answer:

$$\parallel \vec{v} \parallel = \sqrt{2^3 + (-1)^2}$$
$$= \sqrt{4+1}$$
$$= \sqrt{5} \text{ units}$$

Ex 75: Calculate the length of $\vec{p} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$

$$\|\vec{p}\| = \boxed{5}$$
 units

Answer:

$$\| \vec{p} \| = \sqrt{0^2 + (-5)^2}$$

$$= \sqrt{0 + 25}$$

$$= \sqrt{25}$$

$$= 5 \text{ units}$$

Ex 76: Calculate the length of $\vec{u} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

$$\|\vec{u}\| = \boxed{\sqrt{40}}$$
 units

Answer:

$$\| \vec{u} \| = \sqrt{(-6)^2 + 2^2}$$

= $\sqrt{36 + 4}$
= $\sqrt{40}$ units

Ex 77: Calculate the length of $\vec{q} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\|\vec{q}\| = \sqrt{2}$$
 units

Answer:

$$\parallel \vec{q} \parallel = \sqrt{1^2 + (-1)^2}$$

$$= \sqrt{1+1}$$

$$= \sqrt{2} \text{ units}$$

G.2 CALCULATING THE DISTANCE BETWEEN TWO POINTS

Ex 78: Let A(2, 3) and B(7, -1).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{5} \\ \boxed{-4} \end{pmatrix}$$

2. Calculate the distance AB.

$$AB = \sqrt{41}$$
 units

1.
$$\overrightarrow{AB}$$
 = $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ = $\begin{pmatrix} 7 - 2 \\ -1 - 3 \end{pmatrix}$ = $\begin{pmatrix} 5 \\ -4 \end{pmatrix}$

2.
$$AB = \| \overrightarrow{AB} \|$$

= $\sqrt{5^2 + (-4)^2}$
= $\sqrt{25 + 16}$
= $\sqrt{41}$

Ex 79: Let A(-2, 5) and B(4, 2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{6} \\ \boxed{-3} \end{pmatrix}$$

2. Calculate the distance AB.

$$AB = \sqrt{45}$$
 units

Answer:

1.
$$\overrightarrow{AB}$$
 = $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ = $\begin{pmatrix} 4 - (-2) \\ 2 - 5 \end{pmatrix}$ = $\begin{pmatrix} 6 \\ -3 \end{pmatrix}$

2.
$$AB = \| \overrightarrow{AB} \|$$

= $\sqrt{6^2 + (-3)^2}$
= $\sqrt{36 + 9}$
= $\sqrt{45}$

Ex 80: Let A(0, -2) and B(-3, 6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{-3} \\ \boxed{8} \end{pmatrix}$$

2. Calculate the distance AB.

$$AB = \sqrt{73}$$
 units

Answer:

1.
$$\overrightarrow{AB}$$
 = $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ = $\begin{pmatrix} -3 - 0 \\ 6 - (-2) \end{pmatrix}$ = $\begin{pmatrix} -3 \\ 8 \end{pmatrix}$

2.
$$AB = \| \overrightarrow{AB} \|$$
$$= \sqrt{(-3)^2 + 8^2}$$
$$= \sqrt{9 + 64}$$
$$= \sqrt{73}$$

COORDINATES TO **DETERMINE** TRIANGLE TYPES

Let A(0, 0), B(6, 0), and C(6, 8).

- 1. Calculate the lengths $AB,\,BC,\,$ and CA.
 - \bullet AB = 6
 - \bullet BC = 8
 - CA = |10|
- 2. Calculate the perimeter of triangle ABC.

$$Perimeter = \boxed{24} \text{ units}$$

Answer:

- $AB = \sqrt{(6-0)^2 + (0-0)^2} = \sqrt{36} = 6$ 1.
 - $BC = \sqrt{(6-6)^2 + (8-0)^2} = \sqrt{64} = 8$
 - $CA = \sqrt{(0-6)^2 + (0-8)^2} = \sqrt{36+64} = \sqrt{100} = 10$
- 2. Perimeter = 6 + 8 + 10 = 24 units

Let A(0, 0), B(4, 0), and C(2, 4).

- 1. Calculate the lengths AB, BC, and CA.
 - AB = |4|
 - $BC = \sqrt{20}$
 - $CA = \sqrt{20}$
- 2. Is the triangle ABC isosceles?

- $AB = \sqrt{(4-0)^2 + (0-0)^2} = \sqrt{16} = 4$
 - $BC = \sqrt{(2-4)^2 + (4-0)^2} = \sqrt{4+16} = \sqrt{20}$
 - $CA = \sqrt{(0-2)^2 + (0-4)^2} = \sqrt{4+16} = \sqrt{20}$
- 2. Yes, the triangle is isosceles because $BC = CA = \sqrt{20}$, so two sides are equal.

Let A(0, 0), $B(2, 2\sqrt{3})$, and C(4, 0).

- 1. Calculate the lengths AB, BC, and CA.
 - AB = |4|
 - $BC = \boxed{4}$
 - \bullet $CA = \boxed{4}$
- 2. Is the triangle ABC equilateral?

- $AB = \sqrt{(2-0)^2 + (2\sqrt{3}-0)^2} = \sqrt{4+12} = \sqrt{16} = 4$
 - $BC = \sqrt{(4-2)^2 + (0-2\sqrt{3})^2} = \sqrt{4+12} = \sqrt{16} = 4$
 - $CA = \sqrt{(0-4)^2 + (0-0)^2} = \sqrt{16} = 4$
- 2. Yes, the triangle is equilateral because AB = BC = CA = 4.

H COLINEARITY

H.1 TESTING PARALLELISM/ALIGNMENT USING VECTORS

Ex 84:

Let A(1, 2), B(5, 4), C(-1, -1), and D(5, 2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{4} \\ \boxed{2} \end{pmatrix}$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \begin{pmatrix} \boxed{6} \\ \boxed{3} \end{pmatrix}$$

3. Calculate the determinant $\det(\overrightarrow{AB},\,\overrightarrow{CD}).$

$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \boxed{0}$$

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

Answer:

1.
$$\overrightarrow{AB} = \begin{pmatrix} 5-1\\4-2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

2.
$$\overrightarrow{CD} = \begin{pmatrix} 5 - (-1) \\ 2 - (-1) \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

3.
$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix} = 4 \times 3 - 6 \times 2 = 12 - 12 = 0$$

4. Since the determinant is zero, the vectors are colinear, so the lines \overrightarrow{AB} and \overrightarrow{CD} are **parallel**.

Ex 85:

Let A(1, 2), B(5, 4), C(-1, -1), and D(5, 3).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{4} \\ \boxed{2} \end{pmatrix}$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{CD})$.

$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \boxed{4}$$

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

Answer.

1.
$$\overrightarrow{AB} = \begin{pmatrix} 5-1\\4-2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

2.
$$\overrightarrow{CD} = \begin{pmatrix} 5 - (-1) \\ 3 - (-1) \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

3.
$$\det(\overrightarrow{AB}, \overrightarrow{CD}) = \begin{vmatrix} 4 & 6 \\ 2 & 4 \end{vmatrix} = 4 \times 4 - 6 \times 2 = 16 - 12 = 4$$

4. The determinant is not zero, so the vectors are not colinear. Therefore, the lines \overrightarrow{AB} and \overrightarrow{CD} are **not parallel**.

Let A(1, 2), B(5, 4), and C(9, 6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{4} \\ \boxed{2} \end{pmatrix}$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

$$\det(\overrightarrow{AB},\,\overrightarrow{AC}) = \boxed{0}$$

4. Are the points A, B, and C aligned?

Answer:

1.
$$\overrightarrow{AB} = \begin{pmatrix} 5-1\\4-2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

$$2. \ \overrightarrow{AC} = \begin{pmatrix} 9-1 \\ 6-2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

3.
$$\det(\overrightarrow{AB}, \overrightarrow{AC}) = \begin{vmatrix} 4 & 8 \\ 2 & 4 \end{vmatrix} = 4 \times 4 - 8 \times 2 = 16 - 16 = 0$$

4. Since the determinant is zero, the vectors are colinear. Therefore, the points A, B, and C are aligned.

Ex 87:

Let A(1, 2), B(5, 4), and C(9, 7).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \boxed{4} \\ \boxed{2} \end{pmatrix}$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \begin{pmatrix} \boxed{8} \\ \boxed{5} \end{pmatrix}$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

$$\det(\overrightarrow{AB}, \overrightarrow{AC}) = \boxed{4}$$

4. Are the points A, B, and C aligned?

Answer:

1.
$$\overrightarrow{AB} = \begin{pmatrix} 5-1\\4-2 \end{pmatrix} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

$$2. \ \overrightarrow{AC} = \begin{pmatrix} 9-1\\7-2 \end{pmatrix} = \begin{pmatrix} 8\\5 \end{pmatrix}$$

3.
$$\det(\overrightarrow{AB}, \overrightarrow{AC}) = \begin{vmatrix} 4 & 8 \\ 2 & 5 \end{vmatrix} = 4 \times 5 - 8 \times 2 = 20 - 16 = 4$$

4. Since the determinant is not zero, the vectors are not colinear. Therefore, the points $A,\ B,\ {\rm and}\ C$ are not aligned.

