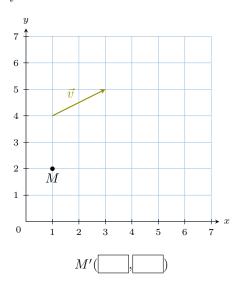
VECTORS

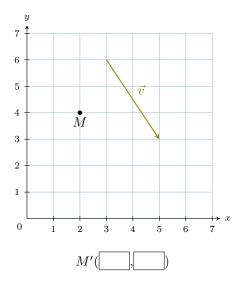
A DEFINITIONS

A.1 FINDING THE IMAGE OF A POINT

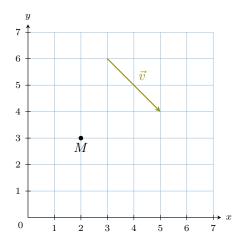
Ex 1: Find the coordinates of the image of point M under a translation by vector \vec{v} .



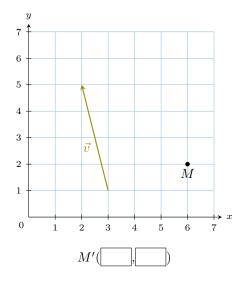
Ex 2: Find the coordinates of the image of point M under a translation by vector \vec{v} .



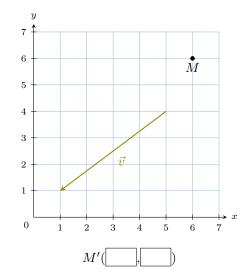
Ex 3: Find the coordinates of the image of point M under a translation by vector \vec{v} .



Ex 4: Find the coordinates of the image of point M under a translation by vector \vec{v} .

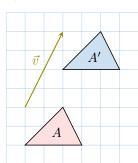


Ex 5: Find the coordinates of the image of point M under a translation by vector \vec{v} .



A.2 TRANSLATION OF FIGURES

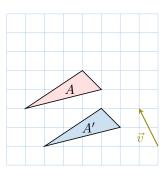
MCQ 6: Is the figure A' the image of figure A under a translation by vector \vec{v} ?



 \square Yes

 \square No

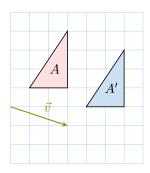
MCQ 7: Is the figure A' the image of figure A under a translation by vector \vec{v} ?



 \square Yes

 \square No

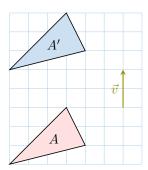
MCQ 8: translation by vector \vec{v} ?



☐ Yes

 \square No

Is the figure A' the image of figure A under a MCQ 9: translation by vector \vec{v} ?

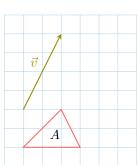


☐ Yes

 \square No

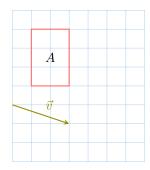
A.3 DRAWING IMAGES FIGURES

Ex 10: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

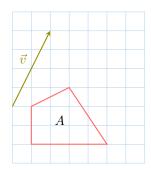


Ex 11: Draw the figure A', the image of figure A under a translation by vector \vec{v} .

Is the figure A' the image of figure A under a **Ex 12:** Draw the figure A', the image of figure A under a translation by vector \vec{v} .

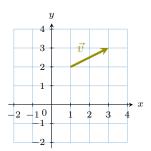


Ex 13: Draw the figure A', the image of figure A under a translation by vector \vec{v} .



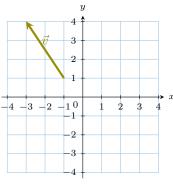
A.4 FINDING COMPONENTS OF A VECTOR

Ex 14: Find the components of the vector \vec{v} .



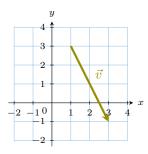
$$\vec{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 15: Find the components of the vector \vec{v} .



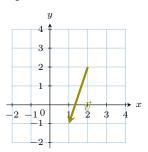
 $ec{v} = \left(egin{array}{c} \egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c}$

Ex 16: Find the components of the vector \vec{v} .



$$ec{v} = \left(egin{array}{c} igcap \ \end{array}
ight)$$

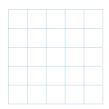
Ex 17: Find the components of the vector \vec{v} .



$$ec{v} = \left(\begin{array}{c} \\ \end{array} \right)$$

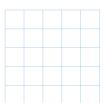
A.5 REPRESENTING VECTORS ON A GRID

Ex 18: Draw the arrows diagram of the vector $\vec{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.



Ex 19: Draw the arrows diagram of the vector $\vec{u} = \begin{pmatrix} -2\\4 \end{pmatrix}$.

Ex 20: Draw the arrows diagram of the vector $\vec{w} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

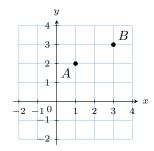


Ex 21: Draw the arrows diagram of the vector $\vec{z} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$.

B TWO POINT NOTATION

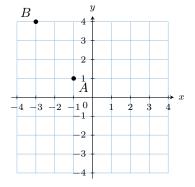
B.1 FINDING COMPONENTS OF A VECTOR

Ex 22: Find the components of the vector \overrightarrow{AB} .



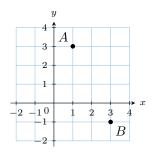
$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

Ex 23: Find the components of the vector \overrightarrow{AB} .

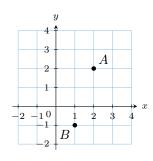


$$\overrightarrow{AB} = \left(\begin{array}{|c|} \hline \\ \hline \end{array} \right)$$

Ex 24: Find the components of the vector \overrightarrow{AB} .



Ex 25: Find the components of the vector \overrightarrow{AB} .



$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

B.2 FINDING THE VECTOR COMPONENTS

Ex 26: For A(1,2) and B(3,3), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

Ex 27: For E(0, 5) and F(4, 2), find the components of the vector \overrightarrow{EF} .

$$\overrightarrow{EF} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 28: For B(-2, 0) and C(3, 4), find the components of the vector \overrightarrow{BC} .

$$\overrightarrow{BC} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

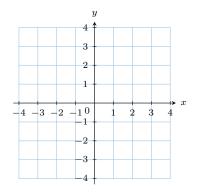
Ex 29: For B(3, 3) and A(1, 2), find the components of the vector \overrightarrow{BA} .

$$\overrightarrow{BA} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

B.3 PLACING A POINT USING A VECTOR

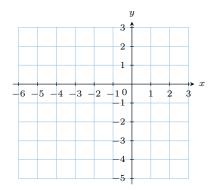
Ex 30:

- 1. Plot the point A(-4,1).
- 2. Plot the point B such that $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.



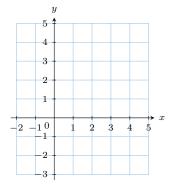
Ex 31:

- 1. Plot the point C(1, -3).
- 2. Plot the point D such that $\overrightarrow{CD} = \begin{pmatrix} -5 \\ 2 \end{pmatrix}$.



Ex 32:

- 1. Plot the point E(0,2).
- 2. Plot the point F such that $\overrightarrow{EF} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$.



B.4 FINDING THE VECTOR COMPONENTS IN 3D

Ex 33: For A(1,1,1) and B(2,3,4), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

Ex 34: For A(4,2,3) and B(1,4,3), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

Ex 35: For A(4,4,4) and B(1,3,0), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

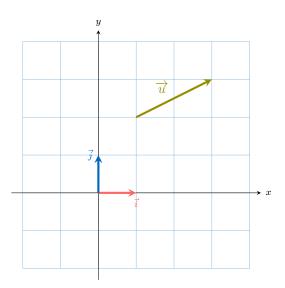
Ex 36: For A(2,0,-3) and B(0,3,1), find the components of the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

C BASE VECTORS

C.1 DECOMPOSING A VECTOR

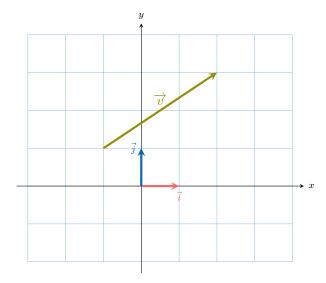
Ex 37:



Write in unit vector form:

$$\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j}$$

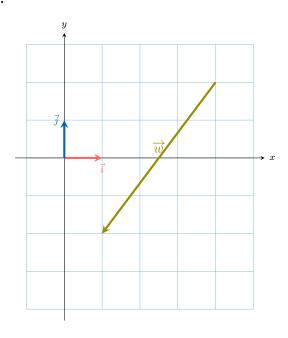
Ex 38:



Write in unit vector form:

$$\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j}$$

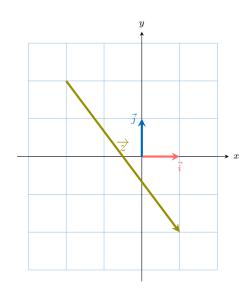
Ex 39:



Write in unit vector form:

$$\overrightarrow{w} = \overrightarrow{i} + \overrightarrow{j}$$

Ex 40:



Write in unit vector form:

$$\overrightarrow{z} = \overrightarrow{i} + \overrightarrow{j}$$

C.2 CONVERTING COMPONENT FORM TO UNIT VECTOR FORM

 $\mathbf{Ex}\ \mathbf{41:}\ \mathbf{Write}\ \mathrm{in}\ \mathrm{unit}\ \mathrm{vector}\ \mathrm{form:}$

$$\binom{2}{1} = \vec{i} + \vec{j}$$

Ex 42: Write in unit vector form:

$$\begin{pmatrix} 3 \\ -2 \end{pmatrix} = \boxed{\vec{i} - \boxed{\vec{j}}}$$

Ex 43: Write in unit vector form:

$$\begin{pmatrix} -2\\3 \end{pmatrix} = \vec{i} + \vec{j}$$

Ex 44: Write in unit vector form:

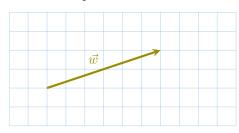
$$\begin{pmatrix} -3 \\ -1 \end{pmatrix} = \boxed{\vec{i} - \boxed{\vec{j}}}$$

D EQUALITY BETWEEN VECTORS

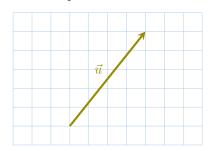
D.1 DRAWING EQUAL VECTORS

Ex 45: Draw a vector equal to \vec{v} .

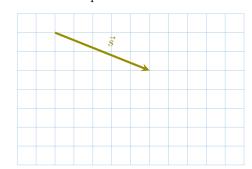
Ex 46: Draw a vector equal to \vec{w} .



Ex 47: Draw a vector equal to \vec{u} .



Ex 48: Draw a vector equal to \vec{s} .



D.2 FINDING THE COORDINATES OF A POINT WITH A GIVEN VECTOR

Ex 49: Let A(2,3), B(5,7), and C(1,-2).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

Ex 50: Let A(0,0), B(4,3), and C(2,1).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

Ex 51: Let A(-1,2), B(1,5), and C(3,-1).

Find the coordinates of the point D such that $\overrightarrow{AB} = \overrightarrow{CD}$.

D.3 SOLVING VECTOR EQUATIONS

Ex 52: Determine the values of x and y for the following vector equality:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
$$x = \boxed{\qquad} \text{and } y = \boxed{\qquad}$$

Ex 53: Determine the values of x and y for the following vector equality:

$$x\overrightarrow{i} + y\overrightarrow{j} = -2\overrightarrow{i} + \overrightarrow{j}$$

 $x =$ and $y =$

Ex 54: Determine the values of x and y for the following vector equality:

$$\begin{pmatrix} x \\ y+1 \end{pmatrix} = \begin{pmatrix} 2x-1 \\ 3-x \end{pmatrix}$$
$$x = \boxed{\quad \text{and } y = \boxed{\quad}}$$

Ex 55: Determine the values of x and y for the following vector equality:

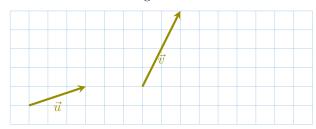
$$x\overrightarrow{i} + y\overrightarrow{j} = 2y\overrightarrow{i} + 3\overrightarrow{j}$$

 $x =$ and $y =$

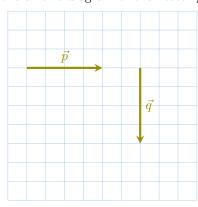
E VECTOR ADDITION AND SUBTRACTION

E.1 DRAWING THE SUM OF TWO VECTORS

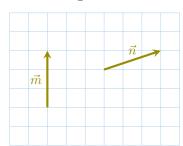
Ex 56: Draw the arrows diagram of the vector $\vec{u} + \vec{v}$.



Ex 57: Draw the arrows diagram of the vector $\vec{p} + \vec{q}$.



Ex 58: Draw the arrows diagram of the vector $\vec{m} + \vec{n}$.



E.2 CALCULATING THE SUM OF VECTORS

Ex 59: Calculate the sum of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ $\binom{-5}{4}$.

Ex 60: Calculate the sum of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\binom{-1}{5}$.

$$\vec{u} + \vec{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

 $\binom{8}{-4}$.

$$\vec{p} + \vec{q} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 62: Calculate the sum of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ $\binom{5}{3}$.

$$\vec{m} + \vec{n} = \left(\begin{array}{c} \boxed{} \end{array} \right)$$

E.3 RECOGNIZING SUMS OF VECTORS

MCQ 63: Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC}$.

- $\Box \overrightarrow{CA}$
- $\square \overrightarrow{AC}$
- $\Box \overrightarrow{BA}$
- $\Box \overrightarrow{CB}$

Calculate the sum of vectors: $\overrightarrow{BC} + \overrightarrow{AB}$. MCQ 64:

- $\Box \overrightarrow{CB}$
- $\Box \overrightarrow{BA}$

- $\Box \overrightarrow{0}$
- $\square \overrightarrow{AC}$

Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BA}$ MCQ 65:

- $\Box \overrightarrow{BA}$
- $\Box \overrightarrow{AB}$
- $\Box \overrightarrow{0}$

Calculate the sum of vectors: $\overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}$. MCQ 66:

- $\Box \overrightarrow{CE}$
- $\Box \overrightarrow{0}$
- $\square \overrightarrow{AC}$
- $\square \overrightarrow{EC}$

Calculate the sum of vectors: $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$. MCQ 67:

- $\Box \overrightarrow{AD}$
- $\Box \overrightarrow{DA}$
- $\square \overrightarrow{BD}$
- $\Box \overrightarrow{0}$

E.4 CALCULATING THE SUM OF VECTORS IN 3D

Ex 61: Calculate the sum of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and $\vec{q} =$ **Ex 68:** Calculate the sum of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $\begin{pmatrix} -5\\4\\2 \end{pmatrix}$.

$$\vec{a} + \vec{b} = \begin{pmatrix} \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 69: Calculate the sum of the vectors $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$
.

$$\vec{u} + \vec{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 70: Calculate the sum of the vectors $\vec{m} = \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix}$ and $\vec{n} = \begin{pmatrix} -1 \\ 0 \\ 5 \end{pmatrix}$

$$\begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}$$
.

$$ec{m} + ec{n} = \left(egin{array}{c} ec{m} \end{array}
ight)$$

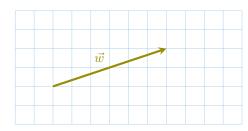
Ex 71: Calculate the sum of the vectors $\vec{p} = \begin{pmatrix} 10 \\ -8 \\ 6 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} \mathbf{Ex 78:} \\ \mathbf{Ex 78:} \\ \mathbf{Ex 78:} \\ \mathbf{Calculate the negative of the vector } \vec{p} = \begin{pmatrix} 0 \\ -8 \end{pmatrix}.$

$$\vec{p} + \vec{q} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

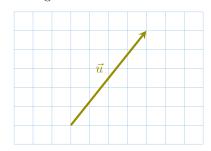
E.5 DRAWING THE NEGATIVE OF A VECTOR

Ex 72: Draw the negative vector of \vec{v} .

Ex 73: Draw the negative vector of \vec{w} .



Ex 74: Draw the negative vector of \vec{u} .



E.6 CALCULATING THE NEGATIVE OF A VECTOR

Ex 75: Calculate the negative of the vector $\vec{a} = \begin{pmatrix} 4 \\ -7 \end{pmatrix}$.

$$-\vec{a} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Ex 76: Calculate the negative of the vector $\vec{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$.

$$-ec{b} = \left(egin{array}{c} lacksquare \ \end{array}
ight)$$

Ex 77: Calculate the negative of the vector $\vec{u} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$.

$$-\vec{u} = \left(\begin{array}{c} \\ \end{array}\right)$$

$$-\vec{p} = \left(\begin{array}{|c|c|} \hline \end{array}\right)$$

E.7 CALCULATING THE DIFFERENCE OF VECTORS

Ex 79: Calculate the difference of the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5\\4 \end{pmatrix}$.

$$ec{a}-ec{b}=\left(egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array$$

Ex 80: Calculate the difference of the vectors $\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$.

$$\vec{u} - \vec{v} = \left(\begin{array}{c} \hline \\ \hline \end{array}\right)$$

Ex 81: Calculate the difference of the vectors $\vec{p} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 8 \\ -4 \end{pmatrix}.$

$$ec{p}-ec{q}=\left(egin{array}{c} \egin{array}{c} \egin{array$$

Ex 82: Calculate the difference of the vectors $\vec{m} = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ and $\vec{n} = {5 \choose 3}.$

$$ec{m}-ec{n}=\left(egin{array}{c} ec{m} \end{array}
ight)$$

DRAWING THE SUBTRACTION **TWO VECTORS**

Ex 83: Draw the vector of $\vec{u} - \vec{v}$. (Do that on your graph paper.)

Ex 84: Draw the vector of $\vec{u} - \vec{v}$. (Do that on your graph paper.)

Ex 85: Draw the vector of $\vec{u} - \vec{v}$. (Do that on your graph paper.)



E.9 CALCULATING THE DIFFERENCE OF VECTORS IN 3D

Ex 86: Calculate the difference of the vectors $\vec{a} = \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}$ and

$$\vec{b} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}.$$

$$ec{a}-ec{b}=egin{pmatrix} oxedsymbol{oxedsymbol{\Box}} oxedsymbol{\Box} oxendow{\Box} oxeta oxendow{\Box} oxeta oxendow{\Box} oxeta oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxeta oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxeta oxendow{\Box} oxeta oxextbox{\Box} oxendow{\Box} oxendow{\Box} oxendow{\Box} oxeta oxendow{\Box} oxendow{\Box} oxeta oxextbox{\Box} oxeta oxeta oxextbox{\Box} oxeta oxeta oxextbox{\Box} oxeta oxextbox{\Box} oxeta oxextbox{\Box} oxeta oxextbox{\Box} oxeta oxeta oxextbox{\Box} oxeta oxextbox{\Box} oxe$$

Ex 87: Calculate the difference of the vectors $\vec{c} = \begin{pmatrix} -6 \\ 7 \\ -1 \end{pmatrix}$ and

$$\vec{d} = \begin{pmatrix} -2\\ -3\\ 5 \end{pmatrix}.$$

$$\vec{c} - \vec{d} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

Ex 88: Calculate the difference of the vectors $\vec{e} = \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}$ and

$$\vec{f} = \begin{pmatrix} 5 \\ 0 \\ -3 \end{pmatrix}.$$

$$\vec{e} - \vec{f} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

F SCALAR MULTIPLICATION

F.1 MULTIPLYING A VECTOR BY A SCALAR

Ex 89: Calculate the product of the vector $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$ by 3.

$$3\vec{b} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

Ex 90: Calculate the product of the vector $\vec{u} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}$ by -2.

$$-2\vec{u} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

Ex 91: Calculate the product of the vector $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ by -4.

$$-4\vec{a} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 92: Calculate the product of the vector $\vec{p} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$ by 0.5.

$$\frac{1}{2}\vec{p} = \left(\boxed{} \right)$$

F.2 CALCULATING LINEAR COMBINATIONS OF VECTORS

Ex 93: Calculate $3\vec{a} - \vec{b}$ where $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \end{pmatrix}$.

$$3\vec{a} - \vec{b} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 94: Calculate $2(\vec{u}+2\vec{v})$ where $\vec{u}=\begin{pmatrix}1\\-2\end{pmatrix}$ and $\vec{v}=\begin{pmatrix}3\\5\end{pmatrix}$.

$$2(\vec{u} + 2\vec{v}) = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 95: Calculate $4\vec{p} - 2\vec{q}$ where $\vec{p} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.

$$4\vec{p} - 2\vec{q} = \begin{pmatrix} \boxed{} \\ \boxed{} \end{pmatrix}$$

Ex 96: Calculate $-3\vec{u} + 5\vec{v}$ where $\vec{u} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$.

$$-3\vec{u} + 5\vec{v} = \left(\begin{array}{|c|} \\ \hline \end{array}\right)$$

F.3 DETERMINING THE IMAGE OF A POINT UNDER A HOMOTHETY

Ex 97: Let O(0,0) and M(3,-2). The point M' is the image of M by the homothety of center O and ratio k=2 so that $2\overrightarrow{OM} = \overrightarrow{OM'}$.

Find the coordinates of M'.

Ex 98: Let A(2,-1) and M(3,1). The point M' is the image of M by the homothety of center A and ratio k=-2 so that $\overrightarrow{AM'}=-2\overrightarrow{AM}$.

Find the coordinates of M'.

Ex 99: Let A(2,-1) and M(3,1). The point M' is the image of M by the homothety of center A and ratio k=3, so that $\overrightarrow{AM'}=3\overrightarrow{AM}$.

Find the coordinates of M'.

F.4 CALCULATING LINEAR COMBINATIONS OF VECTORS IN 3D

Ex 100: Calculate $3\vec{a} - \vec{b}$ where $\vec{a} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -5 \\ 4 \\ -2 \end{pmatrix}$.

$$3\vec{a} - \vec{b} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 101: Calculate
$$2\vec{u} + 4\vec{v}$$
 where $\vec{u} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}$.

$$2\vec{u} + 4\vec{v} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

Ex 102: Calculate
$$5\vec{p} - 2\vec{q}$$
 where $\vec{p} = \begin{pmatrix} -1\\2\\-2 \end{pmatrix}$ and $\vec{q} = \begin{pmatrix} 4\\-3\\0 \end{pmatrix}$.

$$5\vec{p} - 2\vec{q} = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

G MAGNITUDE AND UNIT VECTORS

G.1 CALCULATING THE LENGTH OF A VECTOR

Ex 103: Calculate the length of $\overrightarrow{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

$$\|\overrightarrow{v}\| = \boxed{\quad \text{units}}$$

Ex 104: Calculate the length of $\overrightarrow{p} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$

$$\|\overrightarrow{p}\| = \boxed{}$$
 units

Ex 105: Calculate the length of $\overrightarrow{u} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$

$$\|\overrightarrow{u}\| = \boxed{\quad \text{units}}$$

Ex 106: Calculate the length of $\overrightarrow{q} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\|\overrightarrow{q}\| = \boxed{\text{units}}$$

G.2 CALCULATING THE DISTANCE BETWEEN TWO POINTS

Ex 107: Let A(2,3) and B(7,-1).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Calculate the distance AB.

$$AB = \boxed{}$$
 units

Ex 108: Let A(-2,5) and B(4,2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)$$

2. Calculate the distance AB.

$$AB = \boxed{\qquad}$$
 units

Ex 109: Let A(0, -2) and B(-3, 6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Calculate the distance AB.

$$AB =$$
 units

G.3 USING COORDINATES TO DETERMINE TRIANGLE TYPES

Ex 110: Let A(0,0), B(6,0), and C(6,8).

1. Calculate the lengths AB, BC, and CA.

•
$$CA =$$

2. Calculate the perimeter of triangle ABC.

Ex 111: Let A(0,0), B(4,0), and C(2,4).

1. Calculate the lengths AB, BC, and CA.

•	CA =	

2. Is the triangle ABC isosceles?

$$\square$$
 No

Ex 112: Let A(0,0), $B(2,2\sqrt{3})$, and C(4,0).

1. Calculate the lengths AB, BC, and CA.

- *AB* =
- BC =
- *CA* =

2. Is the triangle ABC equilateral?

- \square Yes
- \square No

G.4 CALCULATING THE LENGTH OF A VECTOR IN 3D

Ex 113: Calculate the length of $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$

$$\|\overrightarrow{v}\| = \prod \text{units}$$

Ex 114: Calculate the length of $\overrightarrow{u} = \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$

$$\|\overrightarrow{u}\| = \boxed{\text{units}}$$

Ex 115: Calculate the length of $\overrightarrow{w} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$

$$\|\overrightarrow{w}\| = \boxed{\quad \text{units}}$$

G.5 NORMALIZING A VECTOR

Ex 116: Normalize the vector $\overrightarrow{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Ex :	117:	Norma	alize th	e vecto	$r \overrightarrow{u} =$	$\binom{3}{4}$.		

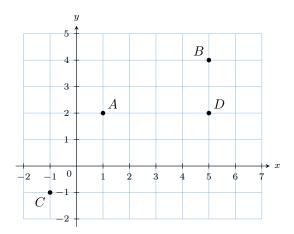
Ex 118: Normalize the vector $\overrightarrow{w} = \begin{pmatrix} -5\\ 2 \end{pmatrix}$

Ex 119: Normalize the vector $\overrightarrow{p} = ($	$\begin{pmatrix} 0 \\ -7 \end{pmatrix}$	
--	---	--

H PARALLEL VECTORS

H.1 TESTING PARALLELISM/ALIGNMENT USING VECTORS

Ex 120:



Let A(1,2), B(5,4), C(-1,-1), and D(5,2).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

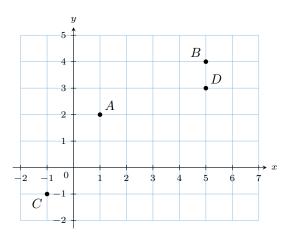
3. Calculate the determinant $\det(\overrightarrow{AB},\,\overrightarrow{CD}).$

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

□ Yes

 \square No

Ex 121:



Let A(1,2), B(5,4), C(-1,-1), and D(5,3).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{CD} .

$$\overrightarrow{CD} = \left(\begin{array}{|c|c|} \hline \\ \hline \end{array}\right)$$

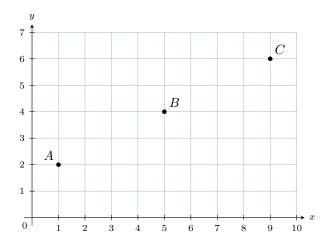
3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{CD})$.

4. Are the lines \overrightarrow{AB} and \overrightarrow{CD} parallel?

□ Yes

□ No

Ex 122:



Let A(1,2), B(5,4), and C(9,6).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \left(\begin{array}{|c|} \hline \\ \hline \end{array}\right)$$

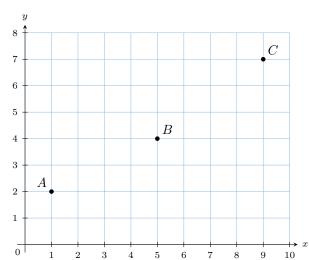
3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

4. Are the points A, B, and C aligned?

□ Yes

 \square No

Ex 123:



Let A(1,2), B(5,4), and C(9,7).

1. Calculate the vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\begin{array}{c} \\ \end{array}\right)$$

2. Calculate the vector \overrightarrow{AC} .

$$\overrightarrow{AC} = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

3. Calculate the determinant $\det(\overrightarrow{AB}, \overrightarrow{AC})$.

$$\det(\overrightarrow{AB},\,\overrightarrow{AC}) = \boxed{}$$

- 4. Are the points A, B, and C aligned?
 - \square Yes
 - \square No