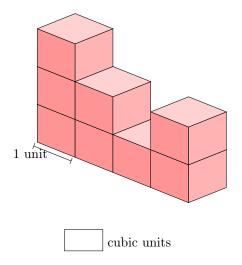
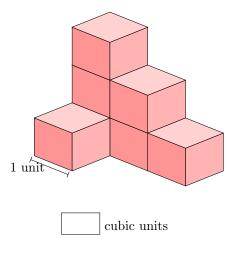
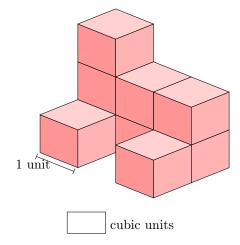
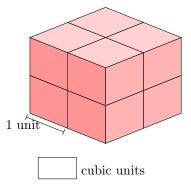

VOLUME

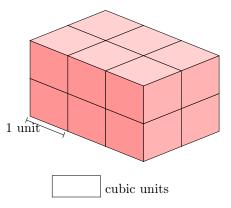

A DEFINITION

A.1 FINDING VOLUME OF A SHAPE

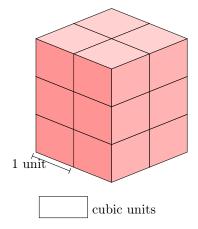

Ex 1: What is the volume of the red figure?



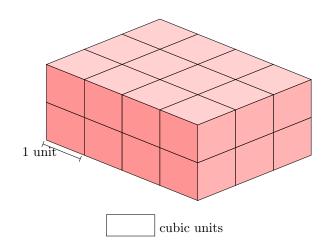

Ex 3: What is the volume of the red figure?



A.2 FINDING VOLUME OF A RECTANGULAR CUBOID


Ex 5: What is the volume of the red figure?

Ex 6: What is the volume of the red figure?



Ex 7: What is the volume of the red figure?

Ex 4: What is the volume of the red figure?

Ex 8: What is the volume of the red figure?

B UNITS OF VOLUME

B.1 CHOOSING UNITS FOR VOLUME

MCQ 9: What unit will be used to measure the volume of your bedroom? Choose 1 answer:

- \Box Cubic millimeters
- \Box Cubic centimeters
- $\Box\,$ Cubic meters

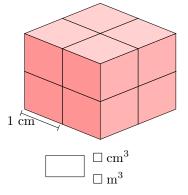
MCQ 10: What unit will be used to measure the volume of a small toy block?

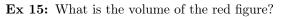
- Choose 1 answer:
 - \Box Cubic millimeters
 - $\hfill\square$ Cubic centimeters
 - $\Box\,$ Cubic meters

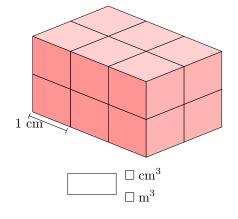
MCQ 11: What unit will be used to measure the volume of a grain of rice? Choose 1 answer:

- \Box Cubic millimeters
- \Box Cubic centimeters
- $\Box\,$ Cubic meters

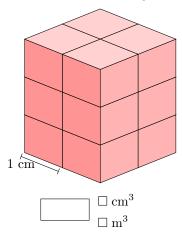
MCQ 12: What unit will be used to measure the volume of a bottle of milk? Choose 1 answer:

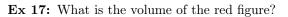

- \Box Cubic millimeters
- \Box Cubic centimeters
- $\Box\,$ Cubic meters

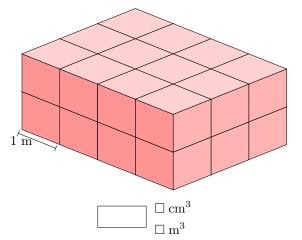

MCQ 13: What unit will be used to measure the volume of a swimming pool? Choose 1 answer:


- \Box Cubic millimeters
- \Box Cubic centimeters
- \Box Cubic meters

B.2 FINDING VOLUME OF A RECTANGULAR CUBOID


Ex 14: What is the volume of the red figure?





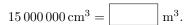
Ex 16: What is the volume of the red figure?

C CONVERSION OF VOLUME UNITS

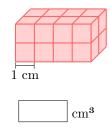
C.1 CONVERTING VOLUME UNITS

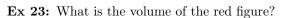
Ex 18: Convert:

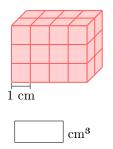
 $3 \,\mathrm{cm}^3 =$ mm³.

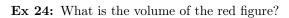

Ex 19: Convert:

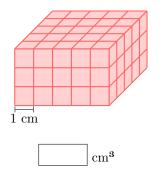
Ex 20: Convert:

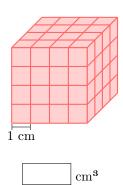

Ex 21: Convert:

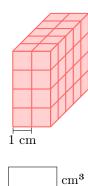


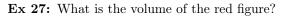

D VOLUME OF A RECTANGULAR CUBOID

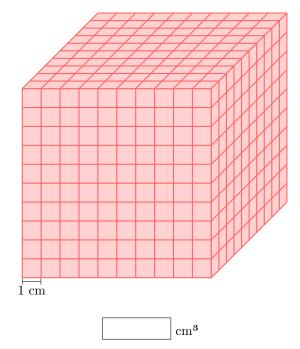

D.1 FINDING VOLUMES OF A RECTANGULAR CUBOIDS


Ex 22: What is the volume of the red figure?







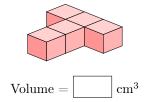

Ex 25: What is the volume of the red figure?

Ex 26: What is the volume of the red figure?

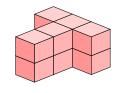
D.2 SOLVING PROBLEMS

Ex 28: A rectangular swimming pool is 8 m long, 5 m wide, and 2 m deep. The water costs 10 dollars per cubic meter. What is the volume of the swimming pool?

What is the cost to fill the swimming pool with water?

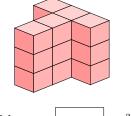


Ex 29. $\overset{\square}{\square \square}$ A container has a volume of 20 m^3 A how is 2 m	$Volume = $ cm^3
Ex 29: If a container has a volume of 20 m^3 . A box is 2 m long, 1 m wide, and 0.5 m high. What is the volume of the box?	4. Calculate the volume of this solid:
m^3	
How many boxes can fit inside the container?	3 cm
boxes	1 cm
Ex 30: A storage room has a volume of 150 m^3 . A water tank is 5 m long, 2 m wide, and 3 m high.	$Volume = $ cm^3
What is the volume of the water tank?	Ex 33:
$\qquad \qquad $	1. Calculate the area of this figure:
How many water tanks can fit inside the storage room?	
water tanks	1 cm
Ex 31: A rectangular fish tank is 2 m long, 1 m wide, and 1 m deep. The water costs 15 dollars per cubic meter.	Area of base = $\begin{tabular}{ c c } \label{eq:area} {\rm Cm}^2 \end{tabular}$
What is the volume of the fish tank?	2. Calculate the volume of this solid:
m^3	
What is the cost to fill the fish tank with water?	
dollars	
E VOLUMES OF SOLIDS WITH UNIFORM	$ m Volume = $ $ m cm^3$
CROSS-SECTION	3. Calculate the volume of this solid:
E.1 CALCULATING VOLUMES STEP-BY-STEP	
Ex 32:	
1. Calculate the area of this figure :	
	$ m Volume = m cm^3$
	4. Calculate the volume of this solid:
Area of base = $\circ cm^2$	
2. Calculate the volume of this solid:	
1 cm	
1 cm	$Volume = $ cm^3
1 cm^3 Volume = cm^3	$Volume = $ m^3 Ex 34:
$Volume = $ cm^3	
	Ex 34:
$Volume = $ cm^3	Ex 34:
$Volume = $ cm^3	Ex 34:


 cm^2 Area of base =

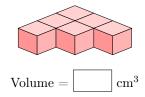
Г

2. Calculate the volume of this solid:

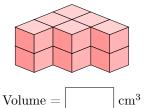


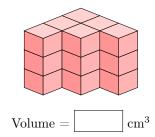
3. Calculate the volume of this solid:

4. Calculate the volume of this solid:

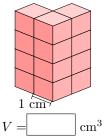


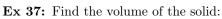
Ex 35:

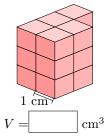

1. Calculate the area of this figure:

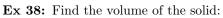

2. Calculate the volume of this solid:

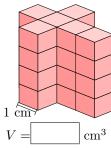
3. Calculate the volume of this solid:

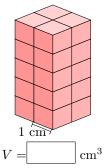


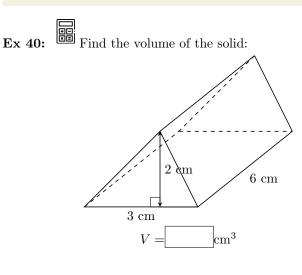

4. Calculate the volume of this solid:

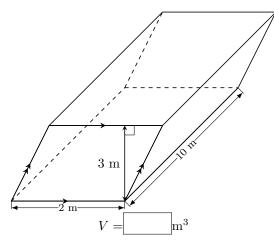


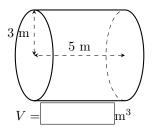

E.2 CALCULATING VOLUMES OF SOLIDS MADE OF CUBES

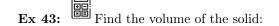

Ex 36: Find the volume of the solid:

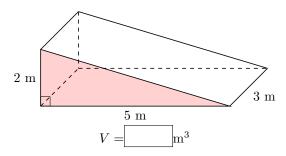




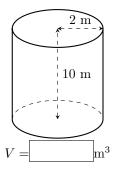

Ex 39: Find the volume of the solid:

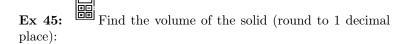

E.3 FINDING VOLUMES OF SOLIDS WITH UNIFORM CROSS-SECTION

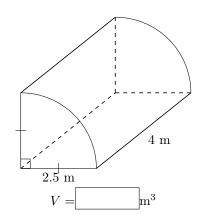



(*<u>+</u>)

±-×≡ Find the volume of the solid (round to 1 decimal Ex 42: place):







Find the volume of the solid (round to 1 decimal Ex 44: place):

F CAPACITY

F.1 CHOOSING UNITS FOR CAPACITY

MCQ 46: What unit best measures the capacity of a bathtub? Choose 1 answer:

- \Box 220 mL
- $\Box~2~200~{\rm mL}$
- □ 220 L

MCQ 47: What unit best measures the capacity of a dosage of medicine?

Choose 1 answer:

- \Box 5 mL
- $\Box~0.5~{\rm L}$
- \Box 5 L

MCQ 48: What unit best measures the capacity of a wine glass?

Choose 1 answer:

- $\Box~150~{\rm L}$
- \Box 15 cL
- $\Box~1.5~{\rm L}$

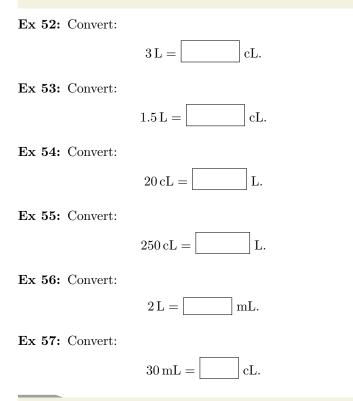
MCQ 49: What unit best measures the capacity of a soup bowl?

Choose 1 answer:

- \Box 40 cL
- \Box 40 mL
- $\Box~40~{\rm L}$

MCQ 50: What unit best measures the capacity of a car's fuel tank?

Choose 1 answer:


- \Box 60 mL
- □ 60 L
- □ 600 L

MCQ 51: What unit best measures the capacity of a pitcher? Choose 1 answer:

- \Box 2.5 mL
- $\Box~2.5~{\rm L}$
- $\Box~25~{\rm L}$

F.2 CONVERTING CAPACITY UNITS

F.3 CONVERTING BETWEEN METRIC VOLUME AND CAPACITY UNITS

Ex 58: Convert:

$5 \mathrm{m}^3 =$		L
--------------------	--	---

Ex 59: Convert:

Ex 60: Convert:

Ex 61: Convert:

(°±°)