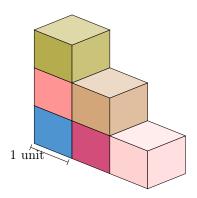
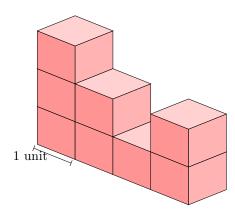
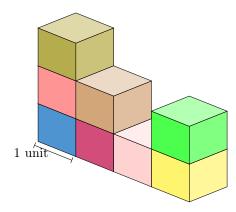

A DEFINITION


A.1 FINDING VOLUME OF A SHAPE

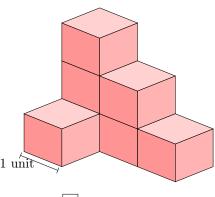
Ex 1: What is the volume of the red figure?


6 cubic units

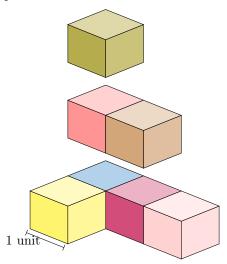
Answer: To find the volume, we count the number of unit cubes inside the shape.


The volume is 6 cubic units.

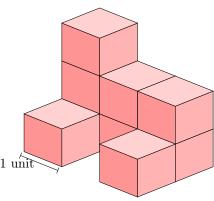
Ex 2: What is the volume of the red figure?


8 cubic units

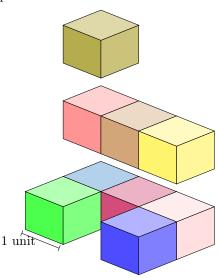
Answer: To find the volume, we count the number of unit cubes inside the shape.


The volume is 8 cubic units.

Ex 3: What is the volume of the red figure?

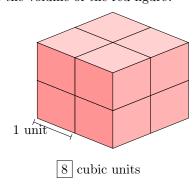

7 cubic units

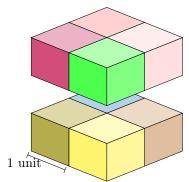
Answer: To find the volume, we count the number of unit cubes inside the shape.



The volume is 7 cubic units.

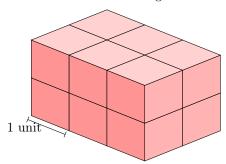
 \mathbf{Ex} 4: What is the volume of the red figure?


Answer: To find the volume, we count the number of unit cubes inside the shape.

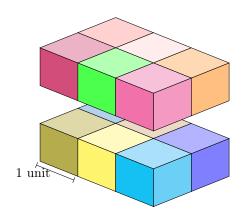

The volume is 9 cubic units.

A.2 FINDING VOLUME OF A RECTANGULAR CUBOID

Ex 5: What is the volume of the red figure?

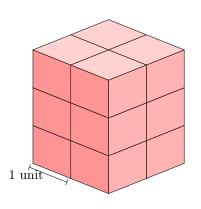


 ${\it Answer:}$ To find the volume, we count the number of unit cubes inside the shape.

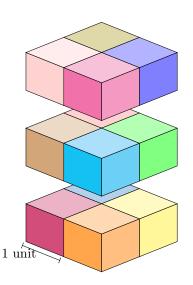


The volume is 8 cubic units.

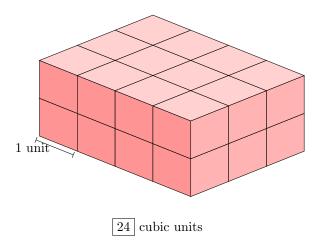
Ex 6: What is the volume of the red figure?



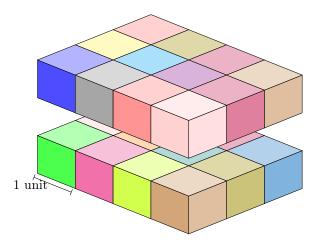
Answer: To find the volume, we count the number of unit cubes inside the shape.


The volume is 12 cubic units.

Ex 7: What is the volume of the red figure?


12 cubic units

Answer: To find the volume, we count the number of unit cubes inside the shape.



The volume is 12 cubic units.

Ex 8: What is the volume of the red figure?

Answer: To find the volume, we count the number of unit cubes inside the shape.

The volume is 24 cubic units.

B UNITS OF VOLUME

B.1 CHOOSING UNITS FOR VOLUME

MCQ 9: What unit will be used to measure the volume of your bedroom?

Choose 1 answer:

- ☐ Cubic millimeters
- \square Cubic centimeters
- □ Cubic meters

Answer: Cubic meters will be used to measure the volume of your bedroom because it's a larger unit, perfect for measuring bigger spaces like a room. Cubic millimeters and cubic centimeters are too small for such a large space.

MCQ 10: What unit will be used to measure the volume of a small toy block?

Choose 1 answer:

- \square Cubic millimeters
- □ Cubic centimeters
- ☐ Cubic meters

Answer: Cubic centimeters will be used to measure the volume of a small toy block because it's a smaller unit, perfect for measuring small objects like a toy block. Cubic millimeters are too tiny, and cubic meters are too large for such a small object.

MCQ 11: What unit will be used to measure the volume of a grain of rice?

Choose 1 answer:

- □ Cubic millimeters
- ☐ Cubic centimeters
- ☐ Cubic meters

Answer: Cubic millimeters will be used to measure the volume of a grain of rice because it's a very small unit, perfect for measuring tiny objects like a grain of rice. Cubic centimeters are too large, and cubic meters are much too big for such a small object.

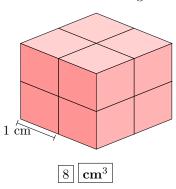
MCQ 12: What unit will be used to measure the volume of a bottle of milk?

Choose 1 answer:

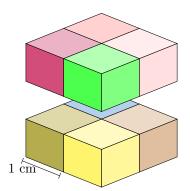
- ☐ Cubic millimeters
- □ Cubic centimeters
- □ Cubic meters

Answer: Cubic centimeters will be used to measure the volume of a bottle of milk because it's a smaller unit, perfect for measuring small objects like a bottle of milk. Cubic millimeters are too tiny, and cubic meters are too large for such a small object.

MCQ 13: What unit will be used to measure the volume of a swimming pool?

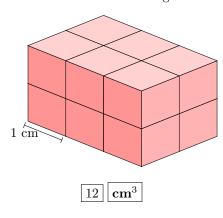

Choose 1 answer:

- ☐ Cubic millimeters
- ☐ Cubic centimeters
- □ Cubic meters

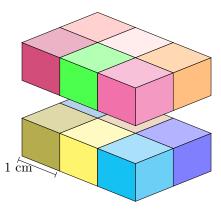

Answer: Cubic meters will be used to measure the volume of a swimming pool because it's a larger unit, perfect for measuring bigger spaces like a swimming pool. Cubic millimeters and cubic centimeters are too small for such a large space.

B.2 FINDING VOLUME OF A RECTANGULAR CUBOID

Ex 14: What is the volume of the red figure?

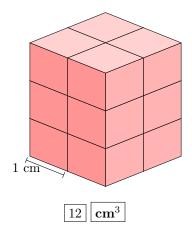


Answer: To find the volume, we count the number of cubes inside Answer: To find the volume, we count the number of cubes inside the shape. Each cube is 1 cm by 1 cm by 1 cm, so each cube is

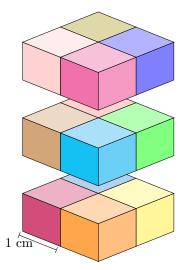


The volume is 4+4=8 cm³.

Ex 15: What is the volume of the red figure?

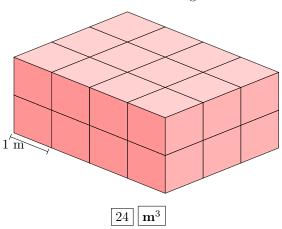


Answer: To find the volume, we count the number of cubes inside the shape. Each cube is 1 cm by 1 cm by 1 cm, so each cube is 1 cm³.

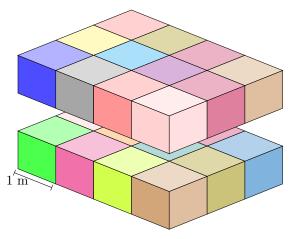


The volume is 6+6=12 cm³.

Ex 16: What is the volume of the red figure?



the shape. Each cube is 1 cm by 1 cm by 1 cm, so each cube is



The volume is $4+4+4=12 \text{ cm}^3$.

Ex 17: What is the volume of the red figure?

Answer: To find the volume, we count the number of cubes inside the shape. Each cube is 1 m by 1 m by 1 m, so each cube is 1 m^3 .

The volume is 12+12=24 m³.

C CONVERSION OF VOLUME UNITS

C.1 CONVERTING VOLUME UNITS

Ex 18: Convert:

4

 $3 \,\mathrm{cm}^3 = \boxed{3000 \,\mathrm{mm}^3}$.

• Multiplication Method:

$$3 \,\mathrm{cm}^3 = 3 \times 1000 \,\mathrm{mm}^3 \quad (1 \,\mathrm{cm}^3 = 1000 \,\mathrm{mm}^3)$$

= $3000 \,\mathrm{mm}^3$

• Conversion Table Method:

m^3	cm^3	mm^3		
	3	0	0	0

So,

$$3 \, \text{cm}^3 = 3000 \, \text{mm}^3$$

Ex 19: Convert:

$$12\,000\,\mathrm{mm}^3 = \boxed{12}\,\mathrm{cm}^3.$$

Answer:

• Division Method:

$$12\,000\,\mathrm{mm}^3 = 12\,000 \div 1000\,\mathrm{cm}^3 \quad (1000\,\mathrm{mm}^3 = 1\,\mathrm{cm}^3)$$

= $12\,\mathrm{cm}^3$

• Conversion Table Method:

m^3					cm^3			mm^3		
						1	2	0	0	0

So,

$$12\,000\,\mathrm{mm}^3 = 12\,\mathrm{cm}^3$$

Ex 20: Convert:

$$4 \,\mathrm{m}^3 = \boxed{4000000} \,\mathrm{cm}^3.$$

Answer:

• Multiplication Method:

$$4 \,\mathrm{m}^3 = 4 \times 1\,000\,000\,\mathrm{cm}^3 \quad (1 \,\mathrm{m}^3 = 1\,000\,000\,\mathrm{cm}^3)$$

= $4\,000\,000\,\mathrm{cm}^3$

• Conversion Table Method:

m^3						${ m cm^3}$			mm^3		
	4	0	0	0	0	0	0				

So,

$$4 \,\mathrm{m}^3 = 4\,000\,000 \,\mathrm{cm}^3$$

Ex 21: Convert:

$$15\,000\,000\,\mathrm{cm}^3 = \boxed{15}\,\mathrm{m}^3.$$

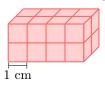
Answer:

• Division Method:

$$15\,000\,000\,\mathrm{cm}^{3} = 15\,000\,000 \div 1\,000\,000\,\mathrm{m}^{3}\,(1\,000\,000\,\mathrm{cm}^{3} = 1\,\mathrm{m}^{3})$$
$$= 15\,\mathrm{m}^{3}$$
 Ex

• Conversion Table Method:

m^3							cm^3			mm^3		
		1	5	0	0	0	0	0	0			

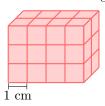

So,

$$15\,000\,000\,\mathrm{cm}^3 = 15\,\mathrm{m}^3$$

D VOLUME OF A RECTANGULAR CUBOID

D.1 FINDING VOLUMES OF A RECTANGULAR CUBOIDS

Ex 22: What is the volume of the red figure?

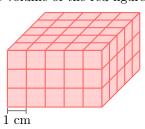


 16 cm^3

Answer: length=4 cm, width=2 cm and height=2 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 4 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}$$
$$= 16 \text{ cm}^3$$

Ex 23: What is the volume of the red figure?

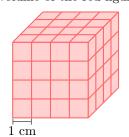


 $24 \,\mathrm{cm}^3$

Answer: Length = 4 cm, width = 3 cm and height = 2 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 4 \text{ cm} \times 3 \text{ cm} \times 2 \text{ cm}$$
$$= 24 \text{ cm}^3$$

Ex 24: What is the volume of the red figure?

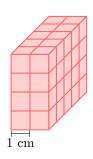


 75 cm^3

Answer: Length = 5 cm, width = 3 cm and height = 5 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 5 \text{ cm} \times 3 \text{ cm} \times 5 \text{ cm}$$
$$= 75 \text{ cm}^3$$

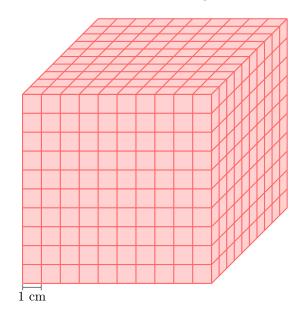
Ex 25: What is the volume of the red figure?



Answer: Length = 4 cm, width = 4 cm and height = 4 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 4 \text{ cm} \times 4 \text{ cm} \times 4 \text{ cm}$$
$$= 64 \text{ cm}^3$$

Ex 26: What is the volume of the red figure?



 40 cm^3

Answer: Length = 2 cm, width = 4 cm and height = 5 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 2 \text{ cm} \times 4 \text{ cm} \times 5 \text{ cm}$$
$$= 40 \text{ cm}^3$$

Ex 27: What is the volume of the red figure?

 1000 cm^3

Answer: Length = 10 cm, width = 10 cm and height = 10 cm.

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 10 \text{ cm} \times 10 \text{ cm} \times 10 \text{ cm}$$
$$= 1000 \text{ cm}^3$$

D.2 SOLVING PROBLEMS

Ex 28: A rectangular swimming pool is 8 m long, 5 m wide, and 2 m deep. The water costs 10 dollars per cubic meter. What is the volume of the swimming pool?

$$80 \text{ m}^3$$

What is the cost to fill the swimming pool with water?

800 dollars

Answer:

• The volume of the rectangular swimming pool is:

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 8 \text{ m} \times 5 \text{ m} \times 2 \text{ m}$$
$$= 80 \text{ m}^3$$

• The cost to fill the swimming pool with water is calculated by:

$$Cost = Volume \times cost per m^3$$

= $80 \text{ m}^3 \times 10 \text{ dollars per m}^3$
= 800 dollars

Ex 29: A container has a volume of $20 \,\mathrm{m}^3$. A box is $2 \,\mathrm{m}$ long, $1 \,\mathrm{m}$ wide, and $0.5 \,\mathrm{m}$ high.

What is the volume of the box?

$$1 \text{ m}^3$$

How many boxes can fit inside the container?

Answer:

• The volume of the box is:

$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 2 \text{ m} \times 1 \text{ m} \times 0.5 \text{ m}$$
$$= 1 \text{ m}^3$$

• The number of boxes that can fit inside the container is calculated by:

Number of boxes = Volume of container \div Volume of one box = $20 \,\mathrm{m}^3 \div 1 \,\mathrm{m}^3$ = $20 \,\mathrm{boxes}$

Ex 30: A storage room has a volume of 150 m³. A water tank is 5 m long, 2 m wide, and 3 m high. What is the volume of the water tank?

$$30 \text{ m}^3$$

How many water tanks can fit inside the storage room?

5 water tanks

• The volume of the water tank is:

$$V = length \times width \times height$$
$$= 5 \text{ m} \times 2 \text{ m} \times 3 \text{ m}$$
$$= 30 \text{ m}^3$$

• The number of water tanks that can fit inside the storage room is calculated by:

Number of water tanks = Volume of room \div Volume of one tank = $150 \,\mathrm{m}^3 \div 30 \,\mathrm{m}^3$

=5 water tanks

Ex 31: A rectangular fish tank is 2 m long, 1 m wide, and 1 m deep. The water costs 15 dollars per cubic meter. What is the volume of the fish tank?

What is the cost to fill the fish tank with water?

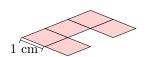
30 dollars

Answer:

 $\bullet\,$ The volume of the rectangular fish tank is:

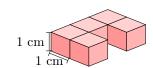
$$V = \text{length} \times \text{width} \times \text{height}$$
$$= 2 \text{ m} \times 1 \text{ m} \times 1 \text{ m}$$
$$= 2 \text{ m}^3$$

• The cost to fill the fish tank with water is calculated by:

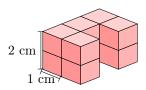

$$\begin{aligned} \text{Cost} &= \text{Volume} \times \text{cost per m}^3 \\ &= 2 \, \text{m}^3 \times 15 \, \text{dollars per m}^3 \\ &= 30 \, \text{dollars} \end{aligned}$$

E VOLUMES OF SOLIDS WITH UNIFORM CROSS-SECTION

E.1 CALCULATING VOLUMES STEP-BY-STEP

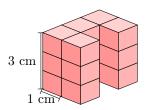

Ex 32:

1. Calculate the area of this figure:



Area of base $= \boxed{5}$ cm²

2. Calculate the volume of this solid:



3. Calculate the volume of this solid:

 $Volume = \boxed{10} \text{ cm}^3$

4. Calculate the volume of this solid:

Volume = 15 cm^3

Answer:

1. Area of the Base:

Area of base = $5 \,\mathrm{cm}^2$

2. Volume with Height of 1 cm:

Volume of uniform cross-section = Area of base \times height

$$= 5 \,\mathrm{cm}^2 \times 1 \,\mathrm{cm}$$
$$= 5 \,\mathrm{cm}^3$$

3. Volume with Height of 2 cm:

Volume of uniform cross-section = Area of base \times height

$$= 5 \,\mathrm{cm}^2 \times 2 \,\mathrm{cm}$$
$$= 10 \,\mathrm{cm}^3$$

4. Volume with Height of 3 cm:

Volume of uniform cross-section = Area of base \times height

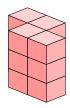
$$= 5 \,\mathrm{cm}^2 \times 3 \,\mathrm{cm}$$
$$= 15 \,\mathrm{cm}^3$$

Ex 33:

1. Calculate the area of this figure:

Area of base = $\boxed{4}$ cm²

2. Calculate the volume of this solid:


Volume =
$$\boxed{4}$$
 cm³

3. Calculate the volume of this solid:

$$Volume = \boxed{8} \text{ cm}^3$$

4. Calculate the volume of this solid:

Volume =
$$\boxed{12}$$
 cm³

Answer:

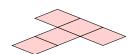
1. Area of the Base:

Area of base $= 4 \,\mathrm{cm}^2$

2. Volume with Height of 1 cm:

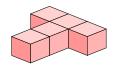
Volume of uniform cross-section = Area of base \times height = $4\,\mathrm{cm}^2 \times 1\,\mathrm{cm}$ = $4\,\mathrm{cm}^3$

3. Volume with Height of 2 cm:

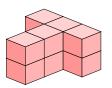

Volume of uniform cross-section = Area of base \times height = $4\,\mathrm{cm}^2 \times 2\,\mathrm{cm}$ = $8\,\mathrm{cm}^3$

4. Volume with Height of 3 cm:

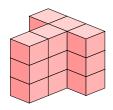
Volume of uniform cross-section = Area of base \times height = $4\,\mathrm{cm}^2 \times 3\,\mathrm{cm}$ = $12\,\mathrm{cm}^3$


Ex 34:

1. Calculate the area of this figure:


Area of base
$$=$$
 $\boxed{5}$ cm²

2. Calculate the volume of this solid:


$$Volume = \boxed{5} \ cm^3$$

3. Calculate the volume of this solid:

Volume =
$$10 \text{ cm}^3$$

4. Calculate the volume of this solid:

Volume =
$$15 \text{ cm}^3$$

Answer:

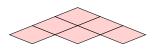
1. Area of the Base:

Area of base $= 5 \,\mathrm{cm}^2$

2. Volume with Height of 1 cm:

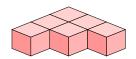
Volume of uniform cross-section = Area of base \times height = $5\,\mathrm{cm}^2\times1\,\mathrm{cm}$ = $5\,\mathrm{cm}^3$

3. Volume with Height of 2 cm:

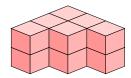

Volume of uniform cross-section = Area of base \times height = $5\,\mathrm{cm}^2\times 2\,\mathrm{cm}$ = $10\,\mathrm{cm}^3$

4. Volume with Height of 3 cm:

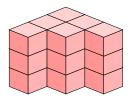
Volume of uniform cross-section = Area of base \times height = $5\,\mathrm{cm}^2\times3\,\mathrm{cm}$ = $15\,\mathrm{cm}^3$


Ex 35:

1. Calculate the area of this figure:


Area of base =
$$\boxed{6}$$
 cm²

2. Calculate the volume of this solid:


$$Volume = \boxed{6} \text{ cm}^3$$

3. Calculate the volume of this solid:

 $Volume = \boxed{12} \ cm^3$

4. Calculate the volume of this solid:

Volume = 18 cm^3

Answer:

1. Area of the Base:

Area of base $= 6 \,\mathrm{cm}^2$

2. Volume with Height of 1 cm:

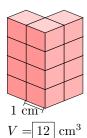
Volume of uniform cross-section = Area of base \times height

$$= 6 \,\mathrm{cm}^2 \times 1 \,\mathrm{cm}$$
$$= 6 \,\mathrm{cm}^3$$

3. Volume with Height of 2 cm:

Volume of uniform cross-section = Area of base \times height

$$= 6 \,\mathrm{cm}^2 \times 2 \,\mathrm{cm}$$
$$= 12 \,\mathrm{cm}^3$$

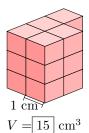

4. Volume with Height of 3 cm:

Volume of uniform cross-section = Area of base \times height

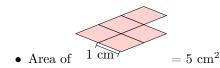
$$= 6 \,\mathrm{cm}^2 \times 3 \,\mathrm{cm}$$
$$= 18 \,\mathrm{cm}^3$$

E.2 CALCULATING VOLUMES OF SOLIDS MADE OF CUBES

Ex 36: Find the volume of the solid:

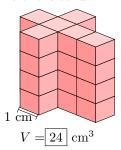


Answer:



- height = 4 cm
- $V = \text{area of end} \times \text{height}$ = $3 \text{ cm}^2 \times 4 \text{ cm}$ = 12 cm^3

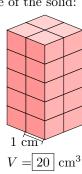
Ex 37: Find the volume of the solid:

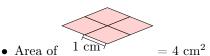


Answer:

- height = 3 cm
- $V = \text{area of end} \times \text{height}$ = $5 \text{ cm}^2 \times 3 \text{ cm}$ = 15 cm^3

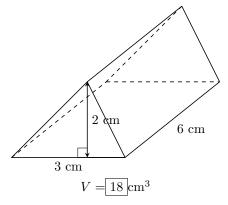
Ex 38: Find the volume of the solid:



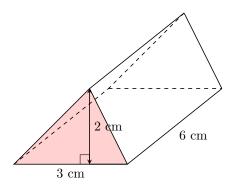

Answer:

- height = 4 cm
- $V = \text{area of end} \times \text{height}$ = $6 \text{ cm}^2 \times 4 \text{ cm}$ = 24 cm^3

Ex 39: Find the volume of the solid:

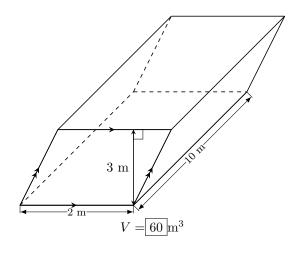


- \bullet height = 5 cm
- $V = \text{area of end} \times \text{height}$ = $4 \text{ cm}^2 \times 5 \text{ cm}$ = 20 cm^3

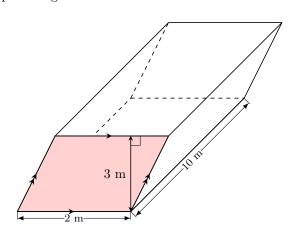

E.3 FINDING VOLUMES OF SOLIDS WITH UNIFORM CROSS-SECTION

Ex 40: Find the volume of the solid:

Answer:

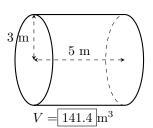

• The solid is a prism with a uniform cross-section. The end is a triangle.

Area of end = Area of triangle $= \frac{b \times h}{2}$ $= \frac{3 \times 2}{2}$

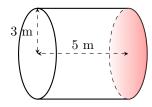

Volume of prism = Area of end × height = $3 \text{ cm}^2 \times 6 \text{ cm}$ = 18 cm^3

Ex 41: Find the volume of the solid:

Answer:


• The solid is a prism with a uniform cross-section. The end is a parallelogram.

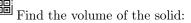
Area of end = Area of parallelogram $= b \times h$ $= 2\,\mathrm{m} \times 3\,\mathrm{m}$ $= 6\,\mathrm{m}^2$

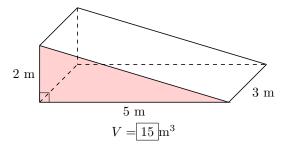

Volume of prism = Area of end \times height = $6 \text{ m}^2 \times 10 \text{ m}$ = 60 m^3

Ex 42: Find the volume of the solid (round to 1 decimal place):

Answer:

• The solid is a cylinder with a uniform cross-section. The end is a circle.

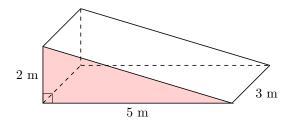

•


Area of end = Area of circle
=
$$\pi r^2$$

= $\pi \times (3)^2$
= $9\pi \text{ m}^2$
 $\approx 28.2743 \text{ m}^2$

•

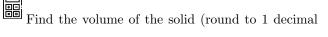
Volume of cylinder = Area of end × height $= 9\pi \, \mathrm{m}^2 \times 5 \, \mathrm{m}$ $= 45\pi \, \mathrm{m}^3$ $\approx 141.3717 \, \mathrm{m}^3$ $\approx 141.4 \, \mathrm{m}^3 \, (\text{rounded to 1 decimal place})$

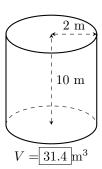

Ex 4

Answer:

• The solid is a prism with a uniform cross-section. The end is a right-angled triangle.

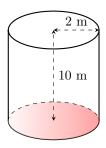
•


Area of end = Area of triangle
$$= \frac{b \times h}{2}$$


$$= \frac{5 \times 2}{2}$$

•

Volume of prism = Area of end
$$\times$$
 height = $5 \text{ m}^2 \times 3 \text{ m}$ = 15 m^3


Ex 44: place):

Answer:

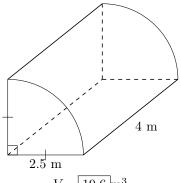
• The solid is a cylinder with a uniform cross-section. The end is a circle.

Area of end = Area of circle

$$= \pi r^2$$
$$= \pi \times (2)^2$$
$$= 4\pi \,\mathrm{m}^2$$

 $\approx 12.5664 \, \mathrm{m}^2$

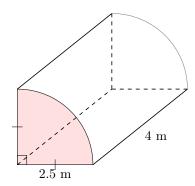
Volume of cylinder = Area of end \times height


$$= 4\pi \,\mathrm{m}^2 \times 10 \,\mathrm{m}$$
$$= 40\pi \,\mathrm{m}^3$$

$$\approx 125.6637 \,\mathrm{m}^3$$

$$\approx 125.7 \,\mathrm{m}^3$$
 (rounded to 1 decimal place)

Ex 45: place):


Find the volume of the solid (round to 1 decimal

 $V = 19.6 \,\mathrm{m}^3$

Answer:

• The solid has a uniform cross-section. The end is a quarter-circle.

Area of end = Area of quarter-circle $= \frac{1}{4} \times \pi r^2$ $= \frac{1}{4} \times \pi \times (2.5)^2$ $= \frac{1}{4} \times \pi \times 6.25$

Volume of prism = Area of end × height $= 4.9087\,\mathrm{m}^2 \times 4\,\mathrm{m}$ $\approx 19.635\,\mathrm{m}^3$ $\approx 19.6\,\mathrm{m}^3 \text{ (rounded to 1 decimal place)}$

F CAPACITY

F.1 CHOOSING UNITS FOR CAPACITY

MCQ 46: What unit best measures the capacity of a bathtub? Choose 1 answer:

- \square 220 mL
- □ 2 200 mL
- ⊠ 220 L

Answer: 220 L best measures the capacity of a bathtub because it's a larger unit, suitable for a big container like a bathtub. 220 mL and 2 200 mL are too small for such a large volume.

MCQ 47: What unit best measures the capacity of a dosage of medicine?

Choose 1 answer:

 \boxtimes 5 mL

 \square 0.5 L

□ 5 L

Answer: 5 mL best measures the capacity of a dosage of medicine because it's a small unit, perfect for tiny amounts like a medicine dose. 0.5 L and 5 L are too large for such a small volume.

MCQ 48: What unit best measures the capacity of a wine glass?

Choose 1 answer:

- □ 150 L
- □ 15 cL
- □ 1.5 L

Answer: 15 cL best measures the capacity of a wine glass because it's a small unit, suitable for a small container like a wine glass. 150 L is much too large, and 1.5 L is also too big for such a small volume.

MCQ 49: What unit best measures the capacity of a soup bowl?

Choose 1 answer:

- ⊠ 40 cL
- □ 40 mL
- □ 40 L

Answer: 40 cL best measures the capacity of a soup bowl because it's a suitable unit for a small container like a bowl. 40 mL is too small, and 4 L is too large for a typical soup bowl.

MCQ 50: What unit best measures the capacity of a car's fuel tank?

Choose 1 answer:

- \Box 60 mL
- ⊠ 60 L
- □ 600 L

Answer: 60 L best measures the capacity of a car's fuel tank because it's a larger unit, suitable for a big container like a fuel tank. 60 mL is much too small, and 600 L is too large for a typical car's fuel tank.

MCQ 51: What unit best measures the capacity of a pitcher? Choose 1 answer:

- □ 2.5 mL
- \boxtimes 2.5 L
- □ 25 L

Answer: 2.5 L best measures the capacity of a pitcher because it's a suitable unit for a medium-sized container like a pitcher. 2.5 mL is too small, and 25 L is too large for a typical pitcher.

F.2 CONVERTING CAPACITY UNITS

Ex 52: Convert:

$$3 L = \boxed{300} cL.$$

Answer:

$$3L = 3 \times 100 \,\text{cL}$$
 $(1L = 100 \,\text{cL})$
= $300 \,\text{cL}$

Ex 53: Convert:

$$1.5 L = 150 cL.$$

Answer:

$$1.5 L = 1.5 \times 100 cL$$
 $(1 L = 100 cL)$
= 150 cL

Ex 54: Convert:

$$20 \, \text{cL} = \boxed{0.2} \, \text{L}.$$

Answer:

$$\begin{aligned} 20\,\mathrm{cL} &= 20 \div 100\,\mathrm{L} \quad (100\,\mathrm{cL} = 1\,\mathrm{L}) \\ &= 0.2\,\mathrm{L} \end{aligned}$$

Ex 55: Convert:

$$250 \,\mathrm{cL} = \boxed{2.5} \,\mathrm{L}.$$

Answer:

$$250 \,\mathrm{cL} = 250 \div 100 \,\mathrm{L} \quad (100 \,\mathrm{cL} = 1 \,\mathrm{L})$$

= $2.5 \,\mathrm{L}$

Ex 56: Convert:

$$2L = \boxed{2000} \text{ mL}.$$

Answer:

$$\begin{split} 2\,L &= 2\times 1\,000\,\mathrm{mL} \quad (1\,L = 1\,000\,\mathrm{mL}) \\ &= 2\,000\,\mathrm{mL} \end{split}$$

Ex 57: Convert:

$$30 \,\mathrm{mL} = \boxed{3} \,\mathrm{cL}.$$

Answer:

$$30 \,\mathrm{mL} = 30 \div 10 \,\mathrm{cL} \quad (10 \,\mathrm{mL} = 1 \,\mathrm{cL})$$

= $3 \,\mathrm{cL}$

F.3 CONVERTING BETWEEN METRIC VOLUME AND CAPACITY UNITS

Ex 58: Convert:

$$5 \,\mathrm{m}^3 = \boxed{5000} \,\mathrm{L}.$$

Answer:

$$\begin{array}{l} 5\,\mathrm{m}^3 = 5 \times 1\,000\,\mathrm{L} \quad (1\,000\,\mathrm{L} = 1\,\mathrm{m}^3) \\ = 5\,000\,\mathrm{L} \end{array}$$

Ex 59: Convert:

$$500 L = \boxed{0.5} m^3.$$

Answer:

$$500 L = 500 \div 1000 m^3 \quad (1000 L = 1 m^3)$$

= $0.5 m^3$

Ex 60: Convert:

$$3.4 \,\mathrm{m}^3 = \boxed{3400} \,\mathrm{L}.$$

Answer:

$$3.4 \,\mathrm{m}^3 = 3.4 \times 1000 \,\mathrm{L} \quad (1\,000 \,\mathrm{L} = 1\,\mathrm{m}^3)$$

= $3\,400 \,\mathrm{L}$

Ex 61: Convert:

$$2 L = \boxed{0.002} m^3.$$

Answer:

$$2 L = 2 \div 1000 \,\mathrm{m}^3 \quad (1000 \,L = 1 \,\mathrm{m}^3)$$

= $0.002 \,\mathrm{m}^3$