

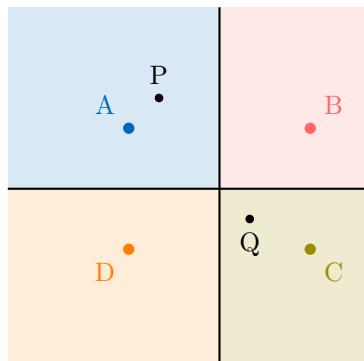
VORONOI DIAGRAMS

A DEFINITIONS

A.1 READING VORONOI DIAGRAMS

Ex 1: Consider the Voronoi diagram below for sites A , B , and C .

1. How many Voronoi regions are there?


2. Which site is closest to point P ?

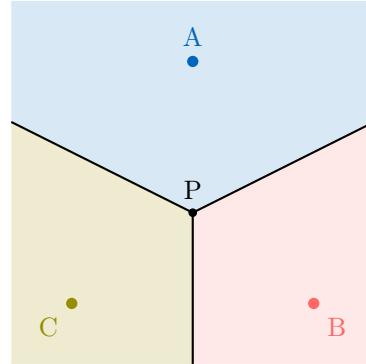
- A
- B
- C

3. Which site is closest to point Q ?

- A
- B
- C

Ex 2: Consider the Voronoi diagram below for sites A , B , C , and D .

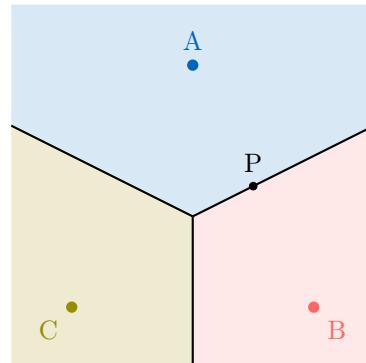
1. How many Voronoi regions are there?


2. Which site is closest to point P ?

- A
- B
- C
- D

3. Which site is closest to point Q ?

- A
- B
- C
- D


MCQ 3:

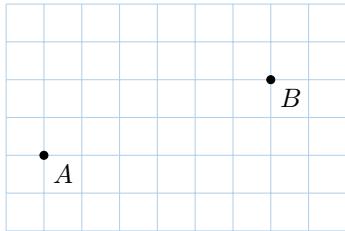
The point P is equidistant from the sites A , B , and C .

- True
- False

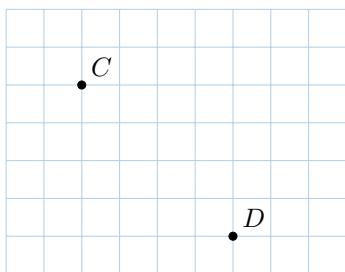
MCQ 4:

The point P is equidistant from sites A and B .

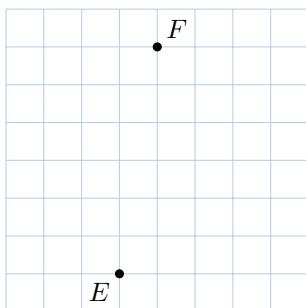
- True
- False


MCQ 5: In a Voronoi diagram, what is true about a point lying exactly on an edge?

- It is closest to all sites in the diagram.
- It is equidistant from the two sites sharing that edge.
- It is the location of a site.


B CONSTRUCTING A VORONOI DIAGRAM

B.1 CONSTRUCTING VORONOI DIAGRAM FOR 2 SITES


Ex 6: Using a ruler and a set square, draw the Voronoi diagram for two sites A and B .

Ex 7: Using a ruler and a set square, draw the Voronoi diagram for two sites C and D .

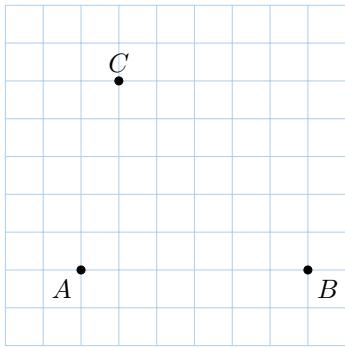
Ex 8: Using a ruler and a set square, draw the Voronoi diagram for two sites $E(3, 1)$ and $F(4, 7)$.

B.2 FINDING THE EQUATION OF THE PERPENDICULAR BISECTOR

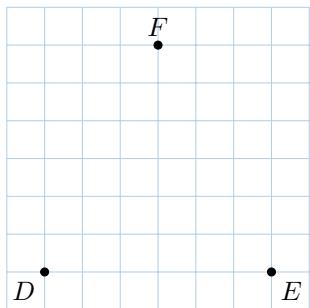
Ex 9: Consider two sites $A(0, 0)$ and $B(4, 2)$.

1. Calculate the coordinates of the midpoint M of the segment $[AB]$.
2. Calculate the gradient (slope) of the segment $[AB]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

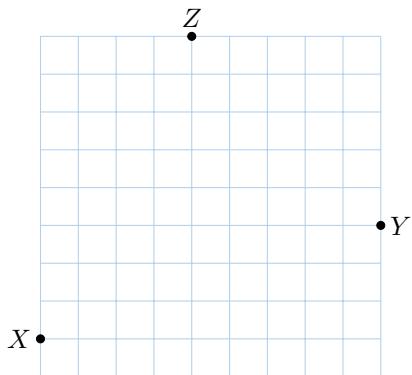
Ex 10: Consider two sites $C(-2, 4)$ and $D(2, -2)$.


1. Calculate the coordinates of the midpoint M of the segment $[CD]$.
2. Calculate the gradient (slope) of the segment $[CD]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

Ex 11: Consider two sites $E(-3, -1)$ and $F(1, 3)$.


1. Calculate the coordinates of the midpoint M of the segment $[EF]$.
2. Calculate the gradient (slope) of the segment $[EF]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

B.3 CONSTRUCTING VORONOI DIAGRAM FOR 3 SITES


Ex 12: Using a ruler and a set square, draw the Voronoi diagram for three sites A , B , and C .

Ex 13: Using a ruler and a set square, draw the Voronoi diagram for three sites D , E , and F .

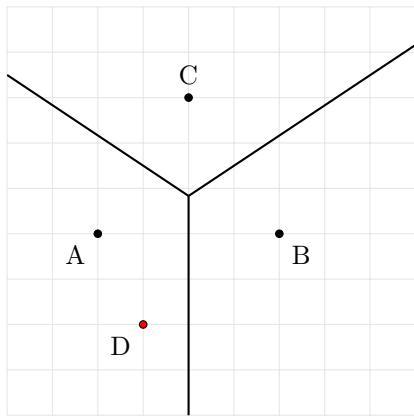
Ex 14: Using a ruler and a set square, draw the Voronoi diagram for three sites X , Y , and Z .

B.4 CONSTRUCTING VORONOI DIAGRAM WITH COORDINATES

Ex 15: Consider three sites $A(0, 0)$, $B(6, 0)$, and $C(2, 4)$. The perpendicular bisector of $[AB]$ has equation $x = 3$.

1. Find the equation of the perpendicular bisector of $[AC]$.
2. Find the coordinates of the Voronoi vertex V where the edges meet.

Ex 16: Consider three sites $X(0, 1)$, $Y(9, 4)$, and $Z(4, 9)$.

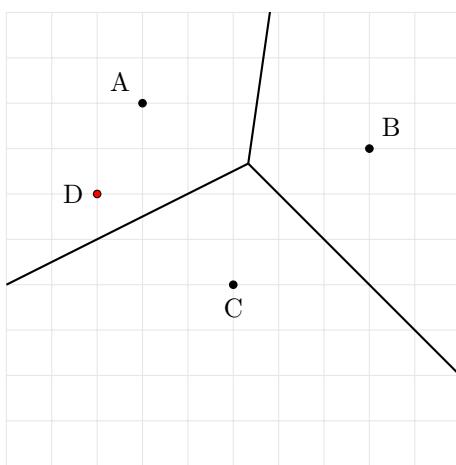

1. Find the equation of the perpendicular bisector of $[YZ]$.
2. Find the equation of the perpendicular bisector of $[XZ]$.
3. Find the coordinates of the Voronoi vertex V where the edges meet.

Ex 17: Consider three sites $A(3, 2)$, $B(8, 3)$, and $C(2, 7)$.

1. Find the equation of the perpendicular bisector of $[AB]$.
2. Find the equation of the perpendicular bisector of $[AC]$.
3. Find the coordinates of the Voronoi vertex V where the edges meet.

B.5 ADDING A NEW SITE

Ex 18: Site D is to be added to the Voronoi diagram shown below for sites A , B , and C .



1. In which existing cell does site D lie?
2. Which of the existing cells will be affected by the introduction of site D ?
3. Redraw the Voronoi diagram with site D added.

2. Which of the existing cells will be affected by the introduction of site D ?

3. Redraw the Voronoi diagram with site D added.

Ex 19: Site D is to be added to the Voronoi diagram shown below for sites A , B , and C . Note that triangle ABC is scalene (all sides are of different lengths).

1. In which existing cell does site D lie?

1. In which existing cell does site E lie?

2. Explain why site E will share a boundary with all other sites (A, B, C, D).

3. Redraw the Voronoi diagram with site E added.

C NEAREST NEIGHBOR INTERPOLATION

C.1 INTERPOLATING USING NEAREST NEIGHBOR ALGORITHM

Ex 21: A city has weather stations at $A(1, 1)$, $B(5, 1)$, and $C(3, 5)$.

The temperatures recorded are: $A : 20^\circ\text{C}$, $B : 22^\circ\text{C}$, $C : 18^\circ\text{C}$. Estimate the temperature at point $P(2, 2)$ using nearest neighbor interpolation.

1. Calculate PA^2 , PB^2 , and PC^2 .
2. Which region contains P ?
3. What is the estimated temperature?

3. What is the estimated pH level?

Ex 22: Agricultural scientists measure the weekly rainfall (in mm) at three stations $R(1, 5)$, $S(5, 5)$, and $T(3, 1)$.

The recorded values are: $R : 12$ mm, $S : 8$ mm, $T : 15$ mm. Estimate the rainfall at a farm located at $P(4, 4)$ using nearest neighbor interpolation.

1. Calculate PR^2 , PS^2 , and PT^2 .
2. Which region contains P ?
3. What is the estimated rainfall?

Ex 23: A biologist measures the soil pH at three locations $D(-2, 3)$, $E(2, 4)$, and $F(0, -1)$.

The pH levels are: $D : 6.5$, $E : 7.2$, $F : 5.8$.

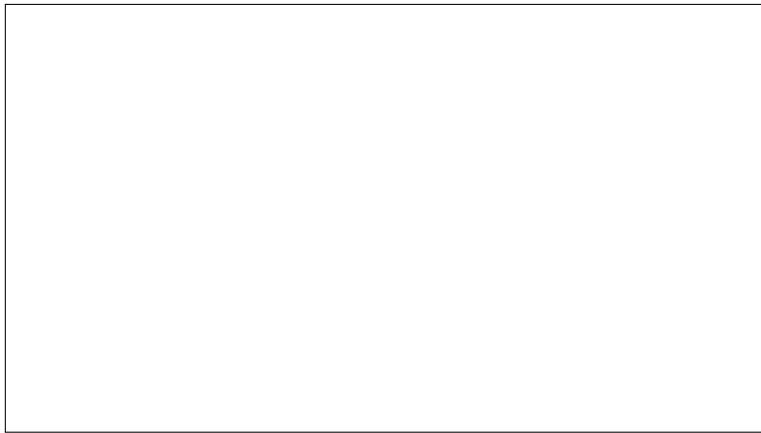
Estimate the pH level at location $P(1, 2)$ using nearest neighbor interpolation.

1. Calculate PD^2 , PE^2 , and PF^2 .
2. Which region contains P ?

D THE TOXIC DUMP PROBLEM

D.1 OPTIMIZING LOCATIONS

Ex 24: The Voronoi diagram for four towns A, B, C , and D has two internal vertices located at $V_1(2, 3)$ and $V_2(4, 1)$. The coordinates of the towns are $A(0, 2)$, $B(3, 1)$, $C(4, 2)$, and $D(4, 0)$. We want to locate a toxic dump as far as possible from any town.


1. Calculate the distance from vertex V_1 to its nearest site $A(0, 2)$.
2. Calculate the distance from vertex V_2 to its nearest site $D(4, 0)$.
3. Which of these two vertices is the best location for the toxic dump? What is the radius of the empty circle there?

Ex 25: A city currently has four fire stations located at $A(1, 5)$, $B(4, 2)$, $C(4, -2)$, and $D(0, 2)$.

The city council wants to build a **fifth fire station**. To maximize efficiency and coverage, the new station should be located at a point that is as far as possible from the existing stations (filling the largest gap in coverage).

The Voronoi diagram for the current stations has two internal vertices located at $V_1(2, 3)$ and $V_2(2, 0)$.

1. Calculate the distance from vertex V_1 to its nearest station A .
2. Calculate the distance from vertex V_2 to its nearest station D .
3. Determine the coordinates of the optimal location for the new fire station E . Justify your answer.

