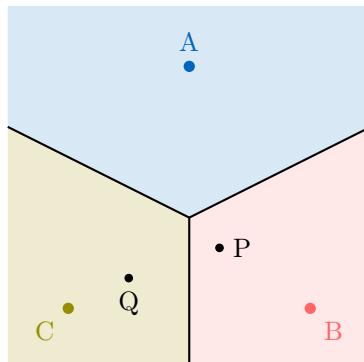


VORONOI DIAGRAMS

A DEFINITIONS

A.1 READING VORONOI DIAGRAMS

Ex 1: Consider the Voronoi diagram below for sites A , B , and C .



1. How many Voronoi regions are there?

3

2. Which site is closest to point P ?

B

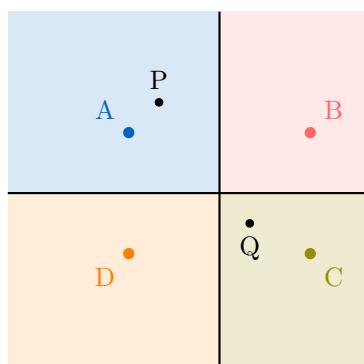
3. Which site is closest to point Q ?

C

Answer:

1. There are 3 sites, so there are 3 regions.
2. Point P is inside the bottom-right region, which contains site B .
3. Point Q is inside the bottom-left region, which contains site C .

Ex 2: Consider the Voronoi diagram below for sites A , B , C , and D .



1. How many Voronoi regions are there?

4

2. Which site is closest to point P ?

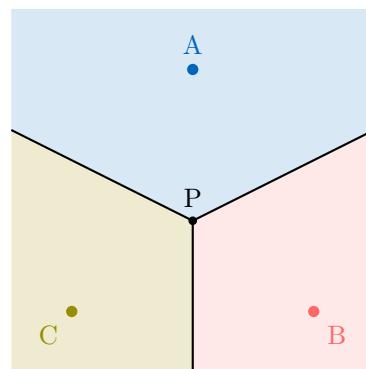
3. Which site is closest to point Q ?

C

Answer:

1. There are 4 sites, so there are 4 regions.
2. Point P is inside the top-left region, which contains site A .
3. Point Q is inside the bottom-right region, which contains site C .

MCQ 3:



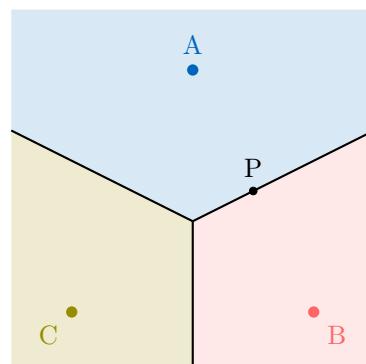
The point P is equidistant from the sites A , B , and C .

True

False

Answer: The point P is the **vertex** where the three edges meet. In a Voronoi diagram, a vertex is the intersection of the perpendicular bisectors of the sites. Therefore, it is the center of the circumcircle passing through these sites and is equidistant from them.

MCQ 4:



The point P is equidistant from sites A and B .

True

False

Answer: An edge in a Voronoi diagram is a segment of the **perpendicular bisector** of the two sites that share the boundary. By definition, any point on the perpendicular bisector is equidistant from the two endpoints (sites). Since P is on the edge between regions A and B , $PA = PB$.

MCQ 5: In a Voronoi diagram, what is true about a point lying exactly on an edge?

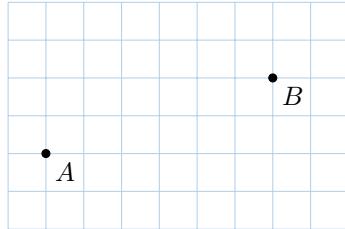
- It is closest to all sites in the diagram.
- It is equidistant from the two sites sharing that edge.
- It is the location of a site.

Answer: An edge is the perpendicular bisector of two sites, meaning any point on it is equidistant from those two sites.

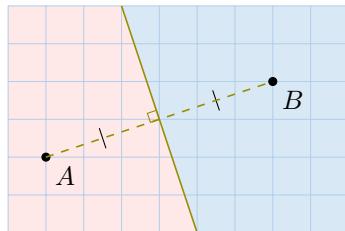
B CONSTRUCTING A VORONOI DIAGRAM

B.1 CONSTRUCTING VORONOI DIAGRAM FOR 2 SITES

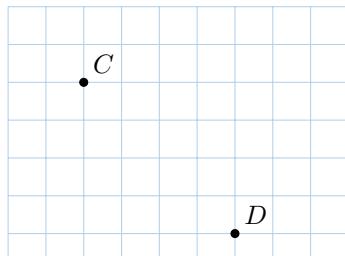
Ex 6: Using a ruler and a set square, draw the Voronoi diagram for two sites A and B .



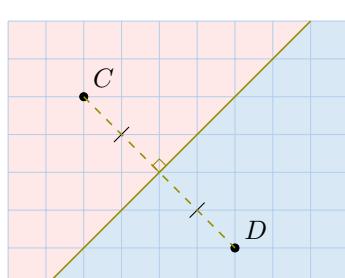
Answer: Draw the perpendicular bisector of the segment $[AB]$.



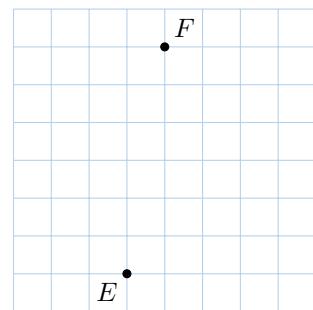
Ex 7: Using a ruler and a set square, draw the Voronoi diagram for two sites C and D .



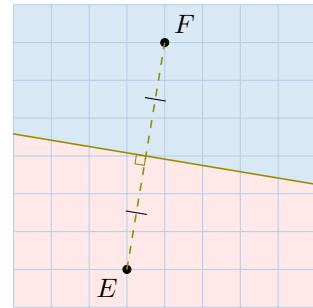
Answer: Draw the perpendicular bisector of the segment $[CD]$.



Ex 8: Using a ruler and a set square, draw the Voronoi diagram for two sites $E(3, 1)$ and $F(4, 7)$.



Answer: Draw the perpendicular bisector of the segment $[EF]$.



B.2 FINDING THE EQUATION OF THE PERPENDICULAR BISECTOR

Ex 9: Consider two sites $A(0, 0)$ and $B(4, 2)$.

1. Calculate the coordinates of the midpoint M of the segment $[AB]$.
2. Calculate the gradient (slope) of the segment $[AB]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

Answer:

1. Midpoint formula: $M\left(\frac{x_A+x_B}{2}, \frac{y_A+y_B}{2}\right)$.

$$M = \left(\frac{0+4}{2}, \frac{0+2}{2}\right) = (2, 1)$$

2. Gradient formula: $m = \frac{y_B - y_A}{x_B - x_A}$.

$$m = \frac{2-0}{4-0} = \frac{2}{4} = 0.5$$

3. Perpendicular gradient formula: $m_{\perp} = -\frac{1}{m}$.

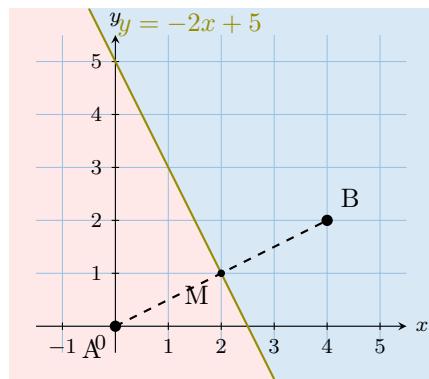
$$m_{\perp} = -\frac{1}{0.5} = -2$$

4. Point-slope form: $y - y_M = m_{\perp}(x - x_M)$.

$$y - 1 = -2(x - 2)$$

$$y - 1 = -2x + 4$$

$$y = -2x + 5$$



Ex 10: Consider two sites $C(-2, 4)$ and $D(2, -2)$.

1. Calculate the coordinates of the midpoint M of the segment $[CD]$.
2. Calculate the gradient (slope) of the segment $[CD]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

Answer:

1. Midpoint formula: $M\left(\frac{x_C+x_D}{2}, \frac{y_C+y_D}{2}\right)$.

$$M = \left(\frac{-2+2}{2}, \frac{4+(-2)}{2}\right) = (0, 1)$$

2. Gradient formula: $m = \frac{y_D-y_C}{x_D-x_C}$.

$$m = \frac{-2-4}{2-(-2)} = \frac{-6}{4} = -1.5$$

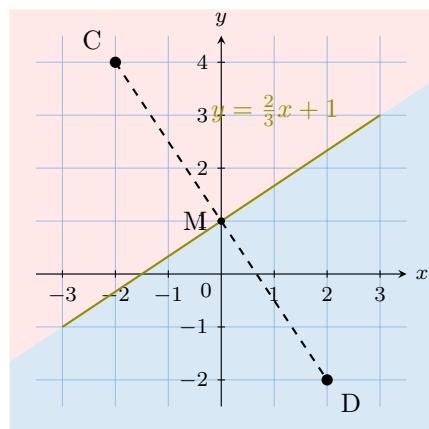
3. Perpendicular gradient formula: $m_{\perp} = -\frac{1}{m}$.

$$m_{\perp} = -\frac{1}{-1.5} = \frac{2}{3} \approx 0.67$$

4. Point-slope form: $y - y_M = m_{\perp}(x - x_M)$.

$$y - 1 = \frac{2}{3}(x - 0)$$

$$y = \frac{2}{3}x + 1$$



Ex 11: Consider two sites $E(-3, -1)$ and $F(1, 3)$.

1. Calculate the coordinates of the midpoint M of the segment $[EF]$.

2. Calculate the gradient (slope) of the segment $[EF]$.
3. Determine the gradient of the perpendicular bisector.
4. Find the equation of the perpendicular bisector in the form $y = mx + c$.

Answer:

1. Midpoint formula: $M\left(\frac{x_E+x_F}{2}, \frac{y_E+y_F}{2}\right)$.

$$M = \left(\frac{-3+1}{2}, \frac{-1+3}{2}\right) = (-1, 1)$$

2. Gradient formula: $m = \frac{y_F-y_E}{x_F-x_E}$.

$$m = \frac{3-(-1)}{1-(-3)} = \frac{4}{4} = 1$$

3. Perpendicular gradient formula: $m_{\perp} = -\frac{1}{m}$.

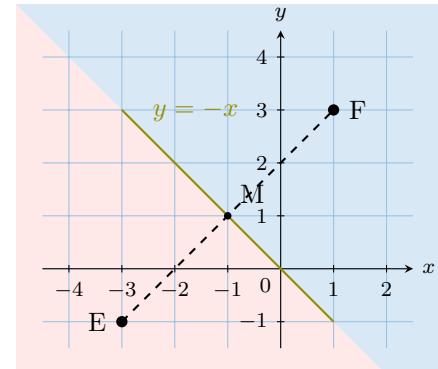
$$m_{\perp} = -\frac{1}{1} = -1$$

4. Point-slope form: $y - y_M = m_{\perp}(x - x_M)$.

$$y - 1 = -1(x - (-1))$$

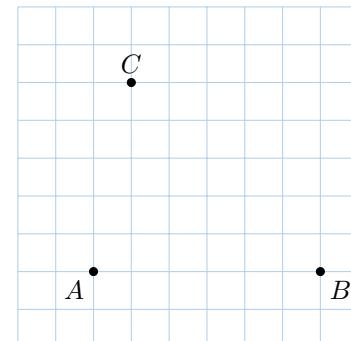
$$y - 1 = -x - 1$$

$$y = -x$$

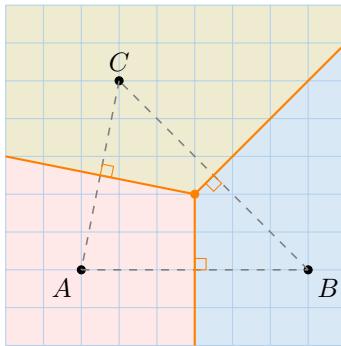


B.3 CONSTRUCTING VORONOI DIAGRAM FOR 3 SITES

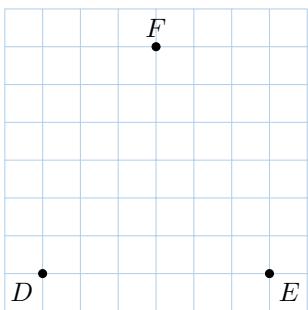
Ex 12: Using a ruler and a set square, draw the Voronoi diagram for three sites A , B , and C .



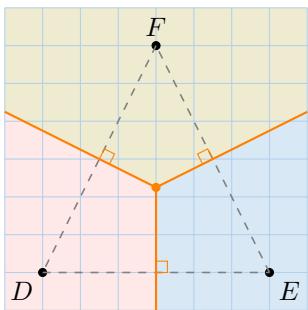
Answer: Draw the perpendicular bisectors of the segments $[AB]$, $[AC]$, and $[BC]$. The intersection point is the Voronoi vertex.



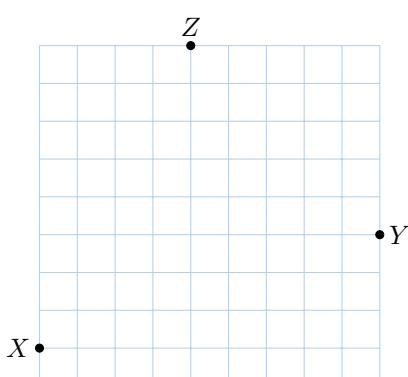
Ex 13: Using a ruler and a set square, draw the Voronoi diagram for three sites D , E , and F .



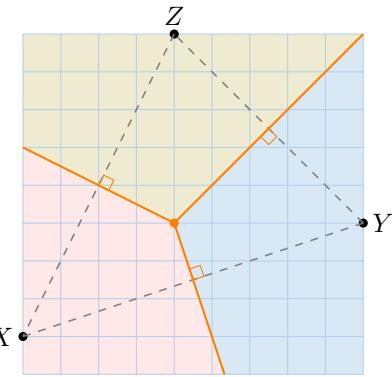
Answer: Draw the perpendicular bisectors of the segments $[DE]$, $[DF]$, and $[EF]$.



Ex 14: Using a ruler and a set square, draw the Voronoi diagram for three sites X , Y , and Z .



Answer: Draw the perpendicular bisectors of the segments $[XY]$, $[XZ]$, and $[YZ]$.



B.4 CONSTRUCTING VORONOI DIAGRAM WITH COORDINATES

Ex 15: Consider three sites $A(0, 0)$, $B(6, 0)$, and $C(2, 4)$. The perpendicular bisector of $[AB]$ has equation $x = 3$.

- Find the equation of the perpendicular bisector of $[AC]$.
- Find the coordinates of the Voronoi vertex V where the edges meet.

Answer:

1. Bisector of $[AC]$:

- Midpoint of $[AC]$: $(\frac{0+2}{2}, \frac{0+4}{2}) = (1, 2)$.
- Gradient of $[AC]$: $m = \frac{4-0}{2-0} = 2$.
- Gradient of bisector: $m_{\perp} = -\frac{1}{2} = -0.5$.
- Equation:

$$\begin{aligned} y - 2 &= -0.5(x - 1) \\ y &= -0.5x + 0.5 + 2 \\ y &= -0.5x + 2.5 \end{aligned}$$

2. Intersection (Vertex):

We have $x = 3$ and $y = -0.5x + 2.5$.

Substitute $x = 3$:

$$\begin{aligned} y &= -0.5(3) + 2.5 \\ &= -1.5 + 2.5 \\ &= 1 \end{aligned}$$

Vertex $V(3, 1)$.

Ex 16: Consider three sites $X(0, 1)$, $Y(9, 4)$, and $Z(4, 9)$.

- Find the equation of the perpendicular bisector of $[YZ]$.
- Find the equation of the perpendicular bisector of $[XZ]$.
- Find the coordinates of the Voronoi vertex V where the edges meet.

Answer:

1. Bisector of $[YZ]$:

- Midpoint of $[YZ]$: $(\frac{9+4}{2}, \frac{4+9}{2}) = (6.5, 6.5)$.
- Gradient of $[YZ]$: $m = \frac{9-4}{4-9} = \frac{5}{-5} = -1$.
- Gradient of bisector: $m_{\perp} = -\frac{1}{-1} = 1$.
- Equation:

$$\begin{aligned} y - 6.5 &= 1(x - 6.5) \\ y &= x \end{aligned}$$

2. Bisector of $[XZ]$:

- Midpoint of $[XZ]$: $(\frac{0+4}{2}, \frac{1+9}{2}) = (2, 5)$.
- Gradient of $[XZ]$: $m = \frac{9-1}{4-0} = \frac{8}{4} = 2$.
- Gradient of bisector: $m_{\perp} = -\frac{1}{2} = -0.5$.
- Equation:

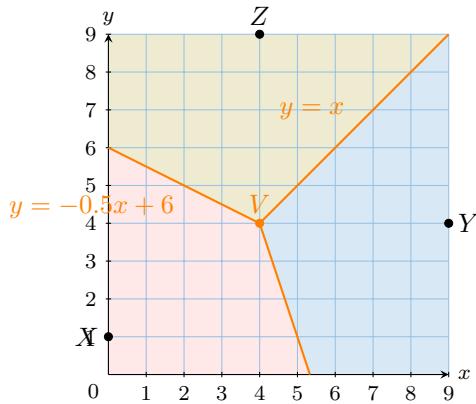
$$\begin{aligned} y - 5 &= -0.5(x - 2) \\ y &= -0.5x + 1 + 5 \\ y &= -0.5x + 6 \end{aligned}$$

3. Intersection (Vertex):

We calculate the intersection of $y = x$ and $y = -0.5x + 6$.
Substitute $y = x$:

$$\begin{aligned} x &= -0.5x + 6 \\ 1.5x &= 6 \\ x &= 4 \end{aligned}$$

Since $y = x$, $y = 4$.
Vertex $V(4, 4)$.



Ex 17: Consider three sites $A(3, 2)$, $B(8, 3)$, and $C(2, 7)$.

1. Find the equation of the perpendicular bisector of $[AB]$.
2. Find the equation of the perpendicular bisector of $[AC]$.
3. Find the coordinates of the Voronoi vertex V where the edges meet.

Answer:

1. Bisector of $[AB]$:

- Midpoint of $[AB]$: $(\frac{3+8}{2}, \frac{2+3}{2}) = (5.5, 2.5)$.
- Gradient of $[AB]$: $m = \frac{3-2}{8-3} = \frac{1}{5} = 0.2$.
- Gradient of bisector: $m_{\perp} = -\frac{1}{0.2} = -5$.
- Equation:

$$\begin{aligned} y - 2.5 &= -5(x - 5.5) \\ y &= -5x + 27.5 + 2.5 \\ y &= -5x + 30 \end{aligned}$$

2. Bisector of $[AC]$:

- Midpoint of $[AC]$: $(\frac{3+2}{2}, \frac{2+7}{2}) = (2.5, 4.5)$.
- Gradient of $[AC]$: $m = \frac{7-2}{2-3} = \frac{5}{-1} = -5$.
- Gradient of bisector: $m_{\perp} = -\frac{1}{-5} = 0.2$.

• Equation:

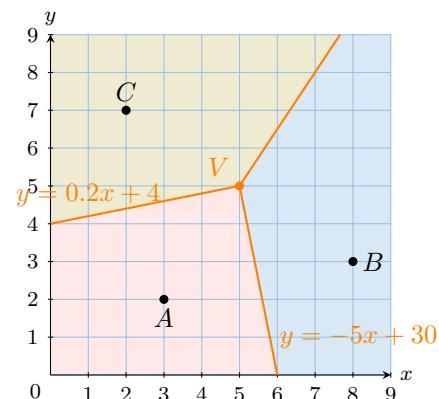
$$\begin{aligned} y - 4.5 &= 0.2(x - 2.5) \\ y &= 0.2x - 0.5 + 4.5 \\ y &= 0.2x + 4 \end{aligned}$$

3. Intersection (Vertex):

We find the intersection of $y = -5x + 30$ and $y = 0.2x + 4$.

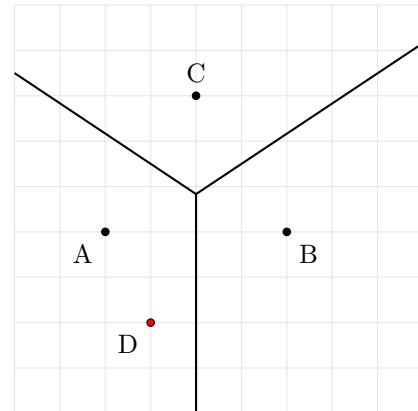
$$\begin{aligned} -5x + 30 &= 0.2x + 4 \\ 26 &= 5.2x \\ x &= 5 \end{aligned}$$

Substitute $x = 5$: $y = 0.2(5) + 4 = 1 + 4 = 5$. Vertex $V(5, 5)$.



B.5 ADDING A NEW SITE

Ex 18: Site D is to be added to the Voronoi diagram shown below for sites A , B , and C .



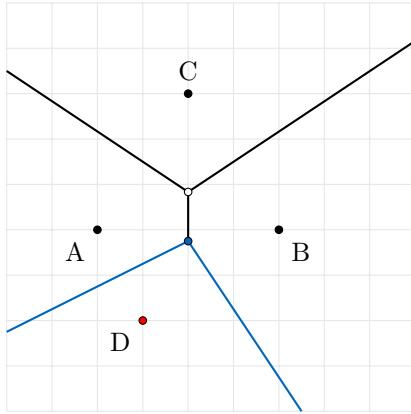
1. In which existing cell does site D lie?

2. Which of the existing cells will be affected by the introduction of site D ?
3. Redraw the Voronoi diagram with site D added.

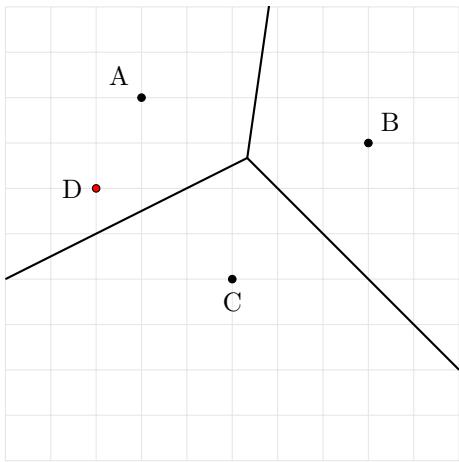
Answer:

1. **Locate Site D:** Visually, site D is closest to site A . It lies in the region of A .
2. **Identify Affected Cells:** Since D lands in cell A , cell A will definitely lose some area. D is also quite close to the boundary with B , so it is likely to steal some area from B as well. Cell C is far away and shielded by A , so it should remain unchanged.
3. **Construction:**

- **Step 1:** Draw the perpendicular bisector of AD .
- **Step 2:** Find where this new bisector intersects the existing edges of cell A . It intersects the edge between A and B . This creates a new vertex V .
- **Step 3:** From V , the boundary must now separate D and B . Draw the bisector of DB .
- **Step 4:** Erase the old edge segments that are now closer to D than to A or B .



Ex 19: Site D is to be added to the Voronoi diagram shown below for sites A , B , and C . Note that triangle ABC is scalene (all sides are of different lengths).



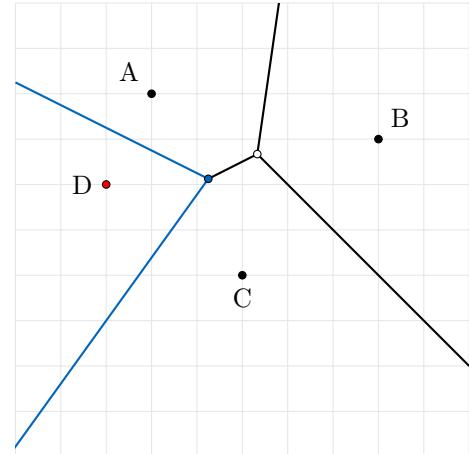
1. In which existing cell does site D lie?
2. Which of the existing cells will be affected by the introduction of site D ?
3. Redraw the Voronoi diagram with site D added.

Answer:

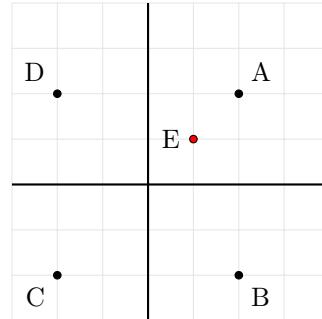
1. **Locate Site D:** Visually, site $D(0, 2)$ is much closer to site $A(1, 4)$ than to C or B . It lies in the region of A .
2. **Identify Affected Cells:** Since D lands in cell A , cell A will definitely lose area. D is also positioned towards the border with C . It is likely that D will steal some area from C as well. Cell B is far to the right, shielded by A , and likely remains unaffected.
3. **Construction:**

- **Step 1:** Draw the perpendicular bisector of AD . $A(1, 4), D(0, 2)$. Midpoint $(0.5, 3)$. Slope $AD = 2$. Perp slope -0.5 . Eq: $y = -0.5x + 3.25$.

- **Step 2:** Find where this bisector intersects the existing edges of cell A . It meets the edge between A and C (line $y = 0.5x + 1$).
 - $-0.5x + 3.25 = 0.5x + 1 \Rightarrow x = 2.25$.
 - $y = 2.125$.
 - New Vertex $V_{new}(2.25, 2.125)$.
- **Step 3:** From V_{new} , the boundary must separate D and C . Draw the bisector of DC .
- **Step 4:** Remove the old edge segments that are now closer to D .



Ex 20: Site E is to be added to the Voronoi diagram shown below for sites A , B , C , and D .



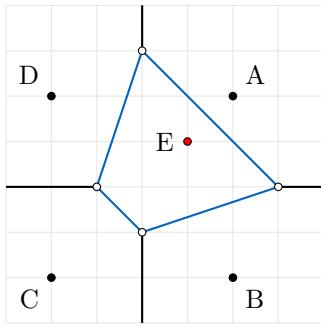
1. In which existing cell does site E lie?
2. Explain why site E will share a boundary with all other sites (A, B, C, D).
3. Redraw the Voronoi diagram with site E added.

Answer:

1. **Locate Site E:**
Visually, site $E(3, 3)$ is closest to site A . It lies in the region of A .
2. **Impact on other cells:**
Since E is closer to the vertex V than the original sites, the new region for E will cover V . Since V was the meeting point of regions A, B, C, D , the new region E will now separate them and share a boundary with each.
3. **Construction:**
We calculate the new vertices by intersecting the bisectors of E and its neighbors with the existing boundaries.
- **Vertex between A, D, E:** Bisector AE intersects AD boundary at $(2, 5)$.

- **Vertex between A, B, E:** Bisector AE intersects AB boundary at $(5, 2)$.
- **Vertex between B, C, E:** Bisector BE intersects BC boundary at $(2, 1)$.
- **Vertex between C, D, E:** Bisector DE intersects CD boundary at $(1, 2)$.

Connect these points to form the cell for E .



C NEAREST NEIGHBOR INTERPOLATION

C.1 INTERPOLATING USING NEAREST NEIGHBOR ALGORITHM

Ex 21: A city has weather stations at $A(1, 1)$, $B(5, 1)$, and $C(3, 5)$.

The temperatures recorded are: $A : 20^\circ\text{C}$, $B : 22^\circ\text{C}$, $C : 18^\circ\text{C}$. Estimate the temperature at point $P(2, 2)$ using nearest neighbor interpolation.

1. Calculate PA^2 , PB^2 , and PC^2 .
2. Which region contains P ?
3. What is the estimated temperature?

Answer: The squared distance between two points (x_1, y_1) and (x_2, y_2) is given by the formula: $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$.

1.
 - $PA^2 = (2 - 1)^2 + (2 - 1)^2 = 1^2 + 1^2 = 2$.
 - $PB^2 = (2 - 5)^2 + (2 - 1)^2 = (-3)^2 + 1^2 = 9 + 1 = 10$.
 - $PC^2 = (2 - 3)^2 + (2 - 5)^2 = (-1)^2 + (-3)^2 = 1 + 9 = 10$.
2. Since PA^2 is the smallest value ($2 < 10$), point P is closest to site A . Therefore, P is in region A .
3. Estimated temperature = Temperature at $A = 20^\circ\text{C}$.

Ex 22: Agricultural scientists measure the weekly rainfall (in mm) at three stations $R(1, 5)$, $S(5, 5)$, and $T(3, 1)$.

The recorded values are: $R : 12$ mm, $S : 8$ mm, $T : 15$ mm. Estimate the rainfall at a farm located at $P(4, 4)$ using nearest neighbor interpolation.

1. Calculate PR^2 , PS^2 , and PT^2 .
2. Which region contains P ?
3. What is the estimated rainfall?

Answer: The squared distance between two points (x_1, y_1) and (x_2, y_2) is given by the formula: $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$.

1.
 - $PR^2 = (4 - 1)^2 + (4 - 5)^2 = 3^2 + (-1)^2 = 9 + 1 = 10$.

- $PS^2 = (4 - 5)^2 + (4 - 5)^2 = (-1)^2 + (-1)^2 = 1 + 1 = 2$.
- $PT^2 = (4 - 3)^2 + (4 - 1)^2 = 1^2 + 3^2 = 1 + 9 = 10$.

2. Since PS^2 is the smallest value ($2 < 10$), point P is closest to site S . Therefore, P is in region S .
3. Estimated rainfall = Rainfall at $S = 8$ mm.

Ex 23: A biologist measures the soil pH at three locations $D(-2, 3)$, $E(2, 4)$, and $F(0, -1)$.

The pH levels are: $D : 6.5$, $E : 7.2$, $F : 5.8$.

Estimate the pH level at location $P(1, 2)$ using nearest neighbor interpolation.

1. Calculate PD^2 , PE^2 , and PF^2 .
2. Which region contains P ?
3. What is the estimated pH level?

Answer: The squared distance between two points (x_1, y_1) and (x_2, y_2) is given by the formula: $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$.

1.
 - $PD^2 = (1 - (-2))^2 + (2 - 3)^2 = 3^2 + (-1)^2 = 9 + 1 = 10$.
 - $PE^2 = (1 - 2)^2 + (2 - 4)^2 = (-1)^2 + (-2)^2 = 1 + 4 = 5$.
 - $PF^2 = (1 - 0)^2 + (2 - (-1))^2 = 1^2 + 3^2 = 1 + 9 = 10$.
2. Since PE^2 is the smallest value ($5 < 10$), point P is closest to site E . Therefore, P is in region E .
3. Estimated pH level = pH at $E = 7.2$.

D THE TOXIC DUMP PROBLEM

D.1 OPTIMIZING LOCATIONS

Ex 24: The Voronoi diagram for four towns A, B, C , and D has two internal vertices located at $V_1(2, 3)$ and $V_2(4, 1)$. The coordinates of the towns are $A(0, 2)$, $B(3, 1)$, $C(4, 2)$, and $D(4, 0)$. We want to locate a toxic dump as far as possible from any town.

1. Calculate the distance from vertex V_1 to its nearest site $A(0, 2)$.
2. Calculate the distance from vertex V_2 to its nearest site $D(4, 0)$.
3. Which of these two vertices is the best location for the toxic dump? What is the radius of the empty circle there?

Answer:

1. Distance from $V_1(2, 3)$ to $A(0, 2)$:

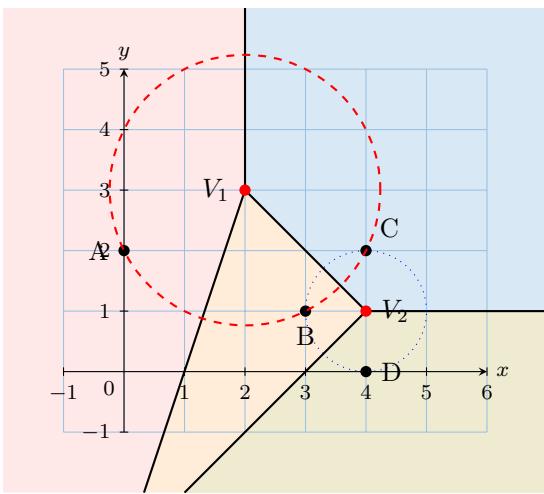
$$d(V_1, A) = \sqrt{(2 - 0)^2 + (3 - 2)^2} \approx 2.24$$

(Note: V_1 is equidistant from A, B, C).
2. Distance from $V_2(4, 1)$ to $D(4, 0)$:

$$d(V_2, D) = \sqrt{(4 - 4)^2 + (1 - 0)^2} = 1$$

(Note: V_2 is equidistant from B, C, D).

3. Comparing the distances, $2.24 > 1$. The vertex V_1 is further from the towns than V_2 . The best location is V_1 , and the radius of the largest empty circle is $\sqrt{5} \approx 2.24$.



Ex 25: A city currently has four fire stations located at $A(1, 5)$, $B(4, 2)$, $C(4, -2)$, and $D(0, 2)$.

The city council wants to build a **fifth fire station**. To maximize efficiency and coverage, the new station should be located at a point that is as far as possible from the existing stations (filling the largest gap in coverage).

The Voronoi diagram for the current stations has two internal vertices located at $V_1(2, 3)$ and $V_2(2, 0)$.

1. Calculate the distance from vertex V_1 to its nearest station A .
2. Calculate the distance from vertex V_2 to its nearest station D .
3. Determine the coordinates of the optimal location for the new fire station E . Justify your answer.

Answer: The optimal location corresponds to the center of the Largest Empty Circle, which is the Voronoi vertex furthest from the sites.

1. Distance from $V_1(2, 3)$ to $A(1, 5)$:

$$d(V_1, A) = \sqrt{(2-1)^2 + (3-5)^2} = \sqrt{5} \approx 2.24$$

(Note: V_1 is equidistant from A, B, D).

2. Distance from $V_2(2, 0)$ to $D(0, 2)$:

$$d(V_2, D) = \sqrt{(2-0)^2 + (0-2)^2} = \sqrt{8} \approx 2.83$$

(Note: V_2 is equidistant from B, C, D).

3. Comparison:

Since $\sqrt{8} > \sqrt{5}$ ($2.83 > 2.24$), the gap around V_2 is larger than the gap around V_1 .

To maximize coverage, the new station E should be built at ** $V_2(2, 0)$ **.

